
CS 61BL Hashing
Summer 2021 Recurring Section 9: Thursday July 29, 2021

1 External Chaining
Consider the following External Chaining Hash Set below, which doubles in size

when the load factor reaches 1.5. Assume that we’re using the default hashCode

for integers, which simply returns the integer itself.

0 → 8

1 → 25

2 → 10

3 → 15

(a) Draw the External Chaining Hash Set that results if we insert 18.

(b) Draw the External Chaining Hash Set that results if we insert 5 after the

insertion done in part (a).






































































































































































































2 Hashing

2 Invalid Hashes
For both parts below, suppose we are trying to hash the following class:

import java.util.Random;

class Point {

private int x;

private int y;

private static count = 0;

public Point(int x, int y) {

this.x = x;

this.y = y;

count += 1;

}

}

(a) Which of the hashCodes are invalid?

(i) public void hashCode() {

System.out.print(this.x + this.y);

}

(ii) public int hashCode() {

Random randomGenerator = new Random();

return randomGenerator.nextInt(Int);

}

(iii) public int hashCode() {

return this.x + this.y;

}

(iv) public int hashCode() {

return 4;

}

(v) public int hashCode() {

return count;

}

(b) Extra: Suppose we know all the Points have x and y coordinates between 0

and 10, inclusive. Suggest a good hashCode method.


















































































































































































































































































































































Text Box
public int hashCode() {
    return this.x * 11 + this.y;
}


































































Hashing 3

3 Hashing Gone Crazy
For this question, use the following TA class for reference.

public class TA {

int charisma;

String name;

TA(String name, int charisma) {

this.name = name;

this.charisma = charisma;

}

@Override

public boolean equals(Object o) {

TA other = (TA) o;

return other.name.charAt(0) == this.name.charAt(0);

}

@Override

public int hashCode() {

return charisma;

}

}

Assume that the hashCode of a TA object returns charisma, and the equals method

returns true if and only if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as

depicted in lecture. The ECHashMap instance begins at size 4 and, for simplicity,

does not resize. Draw the contents of map after the executing the insertions below:

ECHashMap<TA, Integer> map = new ECHashMap<>();

TA sohum = new TA("Sohum", 10);

TA vivant = new TA("Vivant", 20);

map.put(sohum, 1);

map.put(vivant, 2);

vivant.charisma += 2;

map.put(vivant, 3);

sohum.name = "Vohum";

map.put(vivant, 4);

sohum.charisma += 2;

map.put(sohum, 5);

sohum.name = "Sohum";

TA shubha = new TA("Shubha", 24);

map.put(shubha, 6);




























































































































































































































































































































































CS61B MIDTERM 2, SPRING 2021 
GitHub Account #: sp21-s______ 

5	
	

4. Hashing. (195 points)  

a) Those are the facts (40 Points). Throughout this problem, assume we're using a hashtable (as seen in 
lecture) to represent a set. Suppose that each bucket of the hashtable is stored as a left leaning red black 
tree, and we are inserting items that implement the Comparable interface. Which of the following 
statements are true about such a hashtable? 
 

1) (10 points) The runtime of contains is O(N). ○ True 
○ False 

2) (10 points) The runtime of contains is O(log N). ○ True 
○ False 

3) (10 points) The runtime of contains is O(1). ○ True 
○ False 

4) (15 points) One advantage of using an LLRB for the buckets is that it makes it 
possible to efficiently iterate over all of the keys in the set in ascending order. 
 

○ True 

○ False 

5) (15 points) Assuming items are nicely spread out in the hash table, we expect that an 
LLRB bucket would yield significantly better performance for contains and add than if 
we used an ArrayList for each bucket. 
 

○ True 

○ False 

 
b) Adding (120 points). Suppose now that we build a Set<Picture> using a hashtable, where we 
represent each bucket with a linked list. Suppose we've added the Picture objects below with the given 
hashcodes in red: 
 

 
 

1) (40 points) We add a new picture  with hashcode -6. In which bucket will  end up in the 
hashtable? Assume that the hashtable does not resize. 
 
○ 0 ○ 1 ○ 2 ○ 3 ○ 4 

 
 
 





















 UC BERKELEY 
GitHub Account #: sp21-s______	

6	
	

2) (40 points) If we resize our hashtable by doubling its size, items with which hashcode will end up in 
a different bucket number than before the resize operation? Assume we're starting from the original 

figure above without the . 
 
□ 5 □ 1 □ 3 □ 103 □ 28 □ 9  

 
3) (40 points) Suppose that we perform the following actions on the original hashtable with 5 buckets 
illustrated in the image above: 
 

1. Picture x =  
2. hashTable.add(x); // as above, x's hashCode is 9! 
3. x.turnPink(); // modifies x 
4. System.out.println(hashTable.contains(x)); 

 
Assume that the turnPink method changes some of x's pixels pink and adds a 3rd eye so that it looks 

like . This change to the object may result in its hashcode changing. 
 
For which of the following hashcodes will line 4 of the above code print out true? Note that a Picture 
object's equals method returns true only if their pixel values are exactly identical.  
 
□ x.hashCode() is -1 
 

□ x.hashCode() is 0 
 

□ x.hashCode() is 4 
 

□ x.hashCode() is 14 
 

 

□ None of these 
 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. By the Numbers (370 Points).  
 































































































































































































































































































	wk9_annotated
	External Chaining
	Invalid Hashes
	Hashing Gone Crazy

	cs61b_sp21_mt2



