
Recurring Section 8
Aniruth – 5 PM



Announcements

• Midterm this Monday!
• Exam tips

• Quick (conceptual) review on tries and k-d trees
• Introduced from today in lab, so conceptual big picture ideas and then 

questions on the worksheet today.

• From today’s lab, there were some worksheets linked – make sure you do 
those this weekend. These are in scope for the midterm.



Content Review



Midterm Tips

• Exams (in this class) are generally designed to go from easy to hard.
• Past exams are the source for this tidbit.

• Write everything you would have memorized on your cheat sheet. 
Everything.
• All the runtimes, one or two examples. Consider the process of making the 

cheat sheet to be your review.
• Go through all the lectures and labs and keep adding to them.

• Take a practice exam first.
• This way, you know what you know and what you don’t know.
• Spend time reviewing what you don’t and be extra careful to put more effort 

in your cheat sheet on those areas.



Midterm Tips

• If you see something you don’t know/might take a while, feel free to 
skip.
• Personal Strategy: I will try/think about it for a few minutes. I find it helps me 

as I have it in the back of my mind as I go through the rest of the exam.

• Look for common areas that trip you up. Practice using old exams. For 
example:
• Using .equals vs comparing pointers for objects
• Selecting multiple options for bounds that could be true
• Order of tiebreaks for disjoint sets

• Write down questions you miss from practice exams on your cheat 
sheet.



Midterm Tips

• Breathe and pace yourself! You got this.

• Exams at Berkeley, especially in CS, are quite difficult. All that matters 
is that you know your material and apply it the best you can.



Tries

• Think of it as a tree of nodes except you want to 
take advantage of looking for prefixes/store things 
with common prefixes together. (image from 
cs61bl)

• For example, words (i.e. autocomplete) can have 
each node be a character and mark each node 
whenever it’s the end of a stored word.
• This way, storing “win”, “wind”, “window”, and 

“windows” takes only 7 nodes.

https://cs61bl.org/su21/labs/lab15/#tries


k-d Trees

• What made binary trees so great?

• Binary trees are one dimensional (we compare on one thing). How 
can we compare for more dimensions (on more things)?

• Used for multidimensional data, each level is switching the dimension 
we compare on.

• This way, we can traverse the entirety of the data more easily, since 
we know that certain spaces (branches) of the data (tree) do not need 
to be searched, cutting down our time needed.



Example of k-d trees (from cs61bl)

https://cs61bl.org/su21/labs/lab15/#k-d-trees-introduction

