
CS 61BL Trees and Tree Traversals
Summer 2021 Recurring Section 7: Tuesday July 20, 2021

1 Tree-versal
6

4

2

1

5

9

8

7

a) What is the pre-order traversal of the tree?

b) What is the post-order traversal of the tree?

c) What is the in-order traversal of the tree?

d) What is the level-order traversal of the tree?

Text Box
6 4 2 1 5 9 8 7

Text Box
1 2 5 4 7 8 9 6

Text Box
1 2 4 5 6 7 8 9

Text Box
6 4 9 2 5 8 1 7

2 Trees and Tree Traversals

2 Runtime Questions
Provide the best case and worst case runtimes in theta notation in terms of N, and

a brief justification for the following operations on a binary search tree. Assume N

to be the number of nodes in the tree. Additionally, each node correctly maintains

the size of the subtree rooted at it. [Taken from Final Summer 2016]

boolean contains(T o); // Returns true if the object is in the tree

Best: Θ() Justification:

Worst: Θ() Justification:

void insert(T o); // Inserts the given object.

Best: Θ() Justification:

Worst: Θ() Justification:

T getElement(int i); // Returns the ith smallest object in the tree.

Best: Θ() Justification:

Worst: Θ() Justification:

Text Box
Object is at root

Text Box
Object is at the end of a spindly tree

Text Box
Left of root in a right spindly tree

Text Box
Right of last node in a right spindly tree

Text Box
I = 1, tree is right spindly tree

Text Box
I = n, tree is right spindly tree

Trees and Tree Traversals 3

3 Is This a BST?
The following code should check if a given binary tree is a BST. However, for some

trees, it returns the wrong answer. Give an example of a binary tree for which

brokenIsBST fails.

public static boolean brokenIsBST(TreeNode T) {

if (T == null) {

return true;

} else if (T.left != null && T.left.val > T.val) {

return false;

} else if (T.right != null && T.right.val < T.val) {

return false;

} else {

return brokenIsBST(T.left) && brokenIsBST(T.right);

}

}

Now, write isBST that fixes the error encountered in part (a).

Hint : You will find Integer.MIN_VALUE and Integer.MAX_VALUE helpful.

public static boolean isBST(TreeNode T) {

return isBSTHelper();

}

public static boolean isBSTHelper() {

}

4 Trees and Tree Traversals

4 Pruning Trees
Assume we have some binary search tree, and we want to prune it so that all values

in the tree are between L and R, inclusive. Pruning simply means removing certain

items and adjusting the tree so that it is still a BST. Fill out the method below

that takes in a BST, as well as L and R, and returns the pruned tree. Note that the

root of the original tree might not be between L and R, so make sure you return

the root of the new pruned tree.

class BST {

int label;

BST left; // null if no left child

BST right; // null if no right child

}

public BST pruneBST(BST root, int L, int R) {

if (_______________) {

return ________;

} else if (____________________) {

return pruneBST(____________, _____, _____);

} else if (____________________) {

return pruneBST(____________, _____, _____);

}

____________ = pruneBST(____________, _____, _____);

____________ = pruneBST(____________, _____, _____);

return _______;

}

Text Box
root.label < L

Text Box
root.right

Text Box
L

Text Box
R

Text Box
root == null

Text Box
root.label > R

Text Box
root.left

Text Box
L

Text Box
R

Text Box
null

Text Box
root.left

Text Box
root.left

Text Box
L

Text Box
R

Text Box
root

Text Box
root.right

Text Box
root.right

Text Box
L

Text Box
R

Trees and Tree Traversals 5

5 BTree Motivation
1. Why does a binary search tree have a worst case runtime of θ(n) for contains?

2. Give a sequence of operations, such that if they were inserted in the order

they appear, would result in a ”poor” binary search tree.

3. Examine this B-tree with order 3. Mark the paths taken when the user calls

contains(40).

4. Now call insert(35), and draw the resulting tree.

5. What property of a B-tree rectifies problems of binary search trees, such as

the one in 1.1? Why would you not use a B-tree?

	Tree-versal
	Runtime Questions
	Is This a BST?
	Pruning Trees
	BTree Motivation

