
CS 61BL Disjoint Sets and Asymptotics
Summer 2021 Recurring Section 6: Thursday July 15, 2021

1 Disjoint Sets, a.k.a. Union Find
In lab, we discussed the Union Find ADT. Today, we will use union find terminology

so that you have seen both.

(a) Assume we have nine items, represented by integers 0 through 8. All items are

initially unconnected to each other. Draw the union find tree, draw its array

representation after the series of connect() and find() operations, and write

down the result of find() operations using WeightedQuickUnion without

path compression. Break ties by choosing the smaller integer to be the root.

Note: find(x) returns the root of the tree for item x.

connect(2, 3);

connect(1, 2);

connect(5, 7);

connect(8, 4);

connect(7, 2);

find(3);

connect(0, 6);

connect(6, 4);

connect(6, 3);

find(8);

find(6);

(b) Extra: Repeat the above part, using WeightedQuickUnion with Path

Compression.

(c) What is the runtime for ”connect” and ”isConnected” operations using our

Quick Find, Quick Union, and Weighted Quick Union ADTs? Can you explain

why the Weighted Quick union has better runtimes for these operations than

the regular Quick Union?

Text Box
0 1 2 3 4 5 6 7 82 2 -9 2 2 2 2 2 2

Text Box
0 1 2 3 4 5 6 7 82 2 -9 2 0 2 0 5 4

Text Box
Quick Find: connect: N isConnected: constantQuick Union: connect: O(N) isConnected: O(N)Weighted Quick Union: connect: O(logN) isConnected: O(logN)

Text Box
0 1 2 3 4 51 5 5 5 5 50 1 2 3 4 51 1 1 1 1 15 5 5 5 5 5

2 Disjoint Sets and Asymptotics

2 Asymptotics
(a) Order the following big-O runtimes from smallest to largest.

O(log n), O(1), O(nn), O(n3), O(n log n), O(n), O(n!), O(2n), O(n2 log n)

(b) Are the statements in the right column true or false? If false, correct the

asymptotic notation (Ω(·), Θ(·), O(·)). Be sure to give the tightest bound.

Ω(·) is the opposite of O(·), i.e. f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)). Hint:

Make sure to simplify the runtimes first.

f(n) = 20501

f(n) = n2 + n

f(n) = 22n + 1000

f(n) = log(n100)

f(n) = n log n + 3n + n

f(n) = n log n + n2

g(n) = 1

g(n) = 0.000001n3

g(n) = 4n + n100

g(n) = n log n

g(n) = n2 + n + log n

g(n) = log n + n2

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ O(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ Θ(g(n))

(c) Give the worst case and best case runtime in terms of M and N . Assume ping

is in Θ(1) and returns an int.

1 for (int i = N; i > 0; i--) {

2 for (int j = 0; j <= M; j++) {

3 if (ping(i, j) > 64) break;

4 }

5 }

Text Box
 2 1 9 6 4 3 8 7 5

Text Box
False - big theta is betterFalse - not trueFalse - big thetaFalse - not trueTrueTrue

Text Box
Worst: Big Theta(MN)Best: Big Theta(N)

Text Box
ping could always be returning something greater than 64 i.e. 65

Disjoint Sets and Asymptotics 3

(d) Below we have a function that returns true if every int has a duplicate in the

array, and false if there is any unique int in the array. Assume sort(array) is

in Θ(N logN) and returns array sorted.

1 public static boolean noUniques(int[] array) {

2 array = sort(array);

3 int N = array.length;

4 for (int i = 0; i < N; i += 1) {

5 boolean hasDuplicate = false;

6 for (int j = 0; j < N; j += 1) {

7 if (i != j && array[i] == array[j]) {

8 hasDuplicate = true;

9 }

10 }

11 if (!hasDuplicate) return false;

12 }

13 return true;

14 }

1. Give the worst case and best case runtime where N = array.length.

2. Try to come up with a way to implement noUniques() that runs in

Θ(NlogN) time. Can we get any faster?

Text Box
NlogN

Text Box
Best Case: NlogN + N = NlogNWorst Case: NlogN + N^2 = N^2both in big theta

Text Box
5 6 4 9 2 1 9 8 71 2 4 5 6 7 8 9 9

Text Box
Key Insight: sorted arrays are easier to check! (see example in upper right)public static boolean noUniques(int[] array) { array = sort(array); int N = array.length; int curr = array[0]; boolean unique = true; for (int i = 1; i < N; i += 1) { if (curr == array[i]) { unique = false; } else if (unique) { return false; } else { unique = true; curr = array[i]; } } return !unique;}

4 Disjoint Sets and Asymptotics

3 Extra: Finish the Runtimes
Below we see the standard nested for loop, but with missing pieces!

1 for (int i = 1; i < ______; i = ______) {

2 for (int j = 1; j < ______; j = ______) {

3 System.out.println("We will miss you next semester Akshit :(");

4 }

5 }

For each part below, some of the blanks will be filled in, and a desired runtime will

be given. Fill in the remaining blanks to achieve the desired runtime! There may

be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: Θ(N2)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < i; j = ______) {

3 System.out.println("This is one is low key hard");

4 }

5 }

(b) Desired runtime: Θ(log(N))

1 for (int i = 1; i < N; i = i * 2) {

2 for (int j = 1; j < ______; j = j * 2) {

3 System.out.println("This is one is mid key hard");

4 }

5 }

(c) Desired runtime: Θ(2N)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < ______; j = j + 1) {

3 System.out.println("This is one is high key hard");

4 }

5 }

(d) Desired runtime: Θ(N3)

1 for (int i = 1; i < ______; i = i * 2) {

2 for (int j = 1; j < N * N; j = ______) {

3 System.out.println("yikes");

4 }

5 }

	Disjoint Sets, a.k.a. Union Find
	Asymptotics
	Extra: Finish the Runtimes

