CS 61BL ADTs and Inheritance
Summer 2021 Recurring Section 4: Tuesday July 6, 2021

1 ADT Selection

Suppose we have a TA Shreyas who teaches multiple discussion sections! A student
may frequent more than one discussion section. For each situation below, choose
the best ADT(s) out of the following — Map, Set, List — and explain how you can
use the ADT(s) to solve the problem. Each subpart is independent of the previous.
One answer may involve multiple ADTs. There may be mutliple efficient answers

for each problem.

1. Storing all the Students in Shreyas’s first section in alphabetical order.
List - multiple students with the same first name

2. Storing all the Students by their section, where Students within a section are
sorted alphabetically.

Map - key as the section, value as the students within that section (List)

3. Storing the Students in all of Shreyas’s sections. There shouldn’t be dupli-

cates.
Set - List won't account for duplicates

4. Quickly getting a Student by sid.
Map - key as sid, value as Student

5. Quickly getting all Students of a given name. Names aren’t necessarily unique.

Map - key as name, value as Students of that name (List)

6. Cycling through the Students in one discussion section.

List

Text Box
List - multiple students with the same first name

Text Box
Map - key as the section, value as the students within that section (List)

Text Box
Set - List won't account for duplicates

Text Box
Map - key as sid, value as Student

Text Box
Map - key as name, value as Students of that name (List)

Text Box
List

2 ADTs and Inheritance
2 The ABCs of OOP /
Indicate what each line the main program in class D would print, if the line prints g

anything. If any lines error out, identify the errors as compile time or runtime

errors.

Animal a = new Dog();
public class A { Dog d = new Animal();
public void x() {

System.out.println("Ax");

public void y(A z) {
System.out.println("Ay");

b

public class B extends A { (}D

public void y() {
System.out.println("By");

public void y(B z) {

System.out.println("Byz"); “*’ e

b

b

public class C extends A {
public void x() { %
3

System.out.println("Cx");

) private int expected = 0;

public class D {
public static void main(String[] args) {

A e = new B();
A f = new C();

g = new AQ);

h = new CQ);

= (C) new AC(-); R i.expected ?

i= newcO; €

k = (B) e;

x0);Cx

x();AX

ey0; &

((® ©.y0;By

e.y(e); Ay

e.y(f);AY

® —+H W W O W @
-

Text Box
Animal a = new Dog();
Dog d = new Animal();

Text Box
Cx

Text Box
Ax

Text Box
By

Text Box
Ay

Text Box
Ay

Text Box
private int expected = 0;

Text Box
i.expected ?

ADTs and Inheritance 3

3 Classy Cats

Look at the Animal class defined below. The protected access modifier may be new
to you. Simply put, it gives classes in the same package and subclasses access to
those variables. Don’t worry too much about understanding this - it’s not in scope

for exams.

public class Animal {
protected String name, noise;
protected int age;

public Animal(String name, int age) {
this.name = name;
this.age = age;
this.noise = "Huh?";

public String makeNoise() {
if (age < 2) {
return noise.toUpperCase();

}

return noise;

public String greet() {

return name + + makeNoise();

b

(a) Given the Animal class, fill in the definition of the Cat class so that it makes a
”"Meow!” noise. Assume this noise is all caps for kittens, i.e. Cats that are less

than 2 years old.

1 public class Cat extends Animal {
public Cat(String name, int age) {
super(name, age);
this.noise = "Meow!";

}

1%

(b) ”Animal” is an extremely broad classification, so it doesn’t really make sense

to have it be a class. Look at the new definition of the Animal class below.

1 public abstract class Animal {
2 protected String name;
3 protected String noise = "Huh?";

Text Box
public Cat(String name, int age) {
 super(name, age);
 this.noise = "Meow!";
}

20

21

22

23

24

25

ADTs and Inheritance

protected int age;

public String makeNoise() {
if (age < 2) {
return noise.toUpperCase();

b

return noise;

public String greet() {

return name + + makeNoise();

public abstract void shout();
private abstract void count(int x);

Fill out the Cat class again below to allow it to be compatible with Animal
(which is now an abstract class) and its two new methods.

public class Cat extends Animal {
public Cat() {
this.name = "Kitty";
this.age = 1;
this.noise = "Meow!";

public Cat(String name, int age) {
this();
this.name = name;
this.age = age;

3

@Override

public void shout() {
System.out.println(noise.toUpperCase());

3

@Override

private void count(int x) {
for (int i = 0; i < x; i++) {

System.out.println(makeNoise());

3

}

Text Box
public

Text Box
void

Text Box
private

Text Box
void

	ADT Selection
	The ABCs of OOP
	Classy Cats

