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Announcements

• This week covers a variety of algorithms and sorts.
• These are all pretty complex and very important, so I would highly 

recommend you pay very close attention.

• I anticipate we will talk about the algorithms next time.

• We’re almost there! Keep yourself going, because we are really close 
to the finish line.
• We have some review stuff planned for next week to help you all before the 

final!



Content Review



Big Picture

• Two main classifications of graph algorithms in this class:
• Minimum Spanning Trees

• Prim’s
• Relies on cut property

• Kruskal’s
• Relies on cycle detection and sorted edges

• Shortest Paths (specifies a start vertex)
• Dijkstra’s

• Relies on non-negative edges
• If you’re curious on how to make it work with all edges, check out Bellman-Ford (out of scope)

• A*
• Relies on a good heuristic
• Specifies an end vertex too



Prim’s/A*

• These slides were ones I made during my interview for course staff. 
They’re a bit on the long side.
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Minimum Spanning Tree (Review)

Minimum: Least edge weights

Spanning: Connects all nodes

Tree: Specifies the type of graph

Useful Property: Trees have |V|-1 edges



Cut Property

The Cut Property:

When assigning nodes to two non-empty sets, 
the minimum weighted edge between the two 
sets is in the MST.
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To connect the two sets, there must be a 
connecting edge - MSTs are spanning.

The minimum weighted edge between the two 
sets is used in the MST.

For example, consider two groups of friends 
trying to communicate with each other.

Someone in one group must know someone in 
the other group for the two groups to be able to 
pass messages.



Extension to Prim’s
How can we use the cut property to create a generalized algorithm to create a MST?

Each “usage” of the cut property gives one edge to include in the MST.

To get every edge in the MST, the cut property must be applied repeatedly - which is 
Prim’s algorithm.

More formally: 

1. Start from some vertex, assign it to be in one set and every other vertex to be in 
another set. 

2. Repeatedly, add the minimum weight edge between the two sets until there are |V|-1 
edges.



Implementation of Prim’s

Implementation is similar to Dijkstra’s, using distTo, edgeTo, and a fringe PQ 
(priority queue) to relax edges.

How are priority queues implemented (which data structure - important for 
runtime)?

The start vertex has distTo of 0 and every other vertex has distTo of infinity. The 
fringe stores the vertices in order of distTo.



Example of Prim’s

Fringe: [(A: 0), (B: inf), (C: inf), (D: inf), (E: inf), (F: inf)]
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Vertex distTo edgeTo

A 0 -

B inf -

C inf -

D inf -

E inf -

F inf -
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Example of Prim’s

Fringe: [(A: 0), (B: inf), (C: inf), (D: inf), (E: inf), (F: inf)]

Fringe: [(A: 0), (B: inf 1), (C: inf), (D: inf 4), (E: inf), (F: 
inf)]

Fringe: [(B: 1), (D: 4), (C: inf), (E: inf), (F: inf)]
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Vertex distTo edgeTo

A 0 -

B inf 1 A

C inf -

D inf 4 A

E inf -

F inf -
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Example of Prim’s

Fringe: [(B: 1), (D: 4), (C: inf), (E: inf), (F: inf)]

Fringe: [(B: 1), (D: 4), (C: inf 2), (E: inf), (F: inf)]

Fringe: [(C: 2), (D: 4), (E: inf), (F: inf)]
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Vertex distTo edgeTo

A 0 -

B 1 A

C inf 2 B

D 4 A

E inf -

F inf -
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Example of Prim’s

Fringe: [(C: 2), (D: 4), (E: inf), (F: inf)]

Fringe: [(C: 2), (D: 4), (E: inf), (F: inf 3)]

Fringe: [(F: 3), (D: 4), (E: inf)]
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Vertex distTo edgeTo

A 0 -

B 1 A

C 2 B

D 4 A

E inf -

F inf 3 C



2

3

4

1

Example of Prim’s

Fringe: [(F: 3), (D: 4), (E: inf)]

Fringe: [(F: 3), (D: 4), (E: inf 6)]

Fringe: [(D: 4), (E: 6)]
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Vertex distTo edgeTo

A 0 -

B 1 A

C 2 B

D 4 A

E inf 6 F

F 3 C
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Example of Prim’s

Fringe: [(D: 4), (E: 6)]

Fringe: [(D: 4), (E: 6 5)]

Fringe: [(E: 5)]
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Vertex distTo edgeTo

A 0 -

B 1 A

C 2 B

D 4 A

E 6 5 F D

F 3 C
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Example of Prim’s

Fringe: [(E: 5)]

Fringe: [(E: 5)]

Fringe: [] - it’s empty! We’re done!

AB, AD, BC, CF, DE are the 5 edges for the MST of the 
6 vertex graph above.

Total weight: 1 + 2 + 3 + 4 + 5 = 15
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Vertex distTo edgeTo

A 0 -

B 1 A

C 2 B

D 4 A

E 5 D

F 3 C
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Example of Prim’s

There’s an interesting “shortcut” here.

Earlier, I said trees have |V| -1 edges.

Here, there are 6 edges with 6 vertices, so the question 
becomes which singular edge to remove.

It ends up that the largest weighted edge, EF, is removed, 
leaving behind the remaining 5.

This is just a conceptual check that happens to work here.
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Vertex distTo edgeTo

A 0 -

B 1 A

C 2 B

D 4 A

E 5 D

F 3 C



Runtime

Don’t memorize these slides; understand why at each step and for each 
component.

The algorithm has to do three things:

1. Insert vertices into the fringe
2. Delete the minimum from the fringe
3. Change the priority of vertices from the fringe

Break it down by step.



Calculating Runtime

How many vertices would need to be inserted?

What is the cost of each insertion?

How many times would the minimum vertex be deleted?

What is the cost of each insertion?

How many times does each vertex need to be changed priority?

What is the cost of each change?

Total Runtime:



Calculating Runtime

How many vertices would need to be inserted? V

What is the cost of each insertion?

How many times would the minimum vertex be deleted?

What is the cost of each insertion?

How many times does each vertex need to be changed priority?

What is the cost of each change?

Total Runtime:



Calculating Runtime

How many vertices would need to be inserted? V

What is the cost of each insertion? O(logV)

How many times would the minimum vertex be deleted?

What is the cost of each insertion?
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Total Runtime:
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Calculating Runtime

How many vertices would need to be inserted? V

What is the cost of each insertion? O(logV)

How many times would the minimum vertex be deleted? V

What is the cost of each insertion? O(logV)

How many times does each vertex need to be changed priority? O(E)

What is the cost of each change?

Total Runtime:



Calculating Runtime

How many vertices would need to be inserted? V

What is the cost of each insertion? O(logV)

How many times would the minimum vertex be deleted? V

What is the cost of each insertion? O(logV)

How many times does each vertex need to be changed priority? O(E)

What is the cost of each change? O(logV)

Total Runtime:



Calculating Runtime

How many vertices would need to be inserted? V

What is the cost of each insertion? O(logV)

How many times would the minimum vertex be deleted? V

What is the cost of each insertion? O(logV)

How many times does each vertex need to be changed priority? O(E)

What is the cost of each change? O(logV)

Total Runtime: O(VlogV + ElogV) = O(ElogV)



More Advanced Prim’s Demo

https://docs.google.com/presentation/d/1GPizbySYMsUhnXSXKvbqV4UhPCvrt75
0MiqPPgU-eCY

The above link is to a demo from lecture that follows the same procedure on a 
slightly more complicated graph.

https://docs.google.com/presentation/d/1GPizbySYMsUhnXSXKvbqV4UhPCvrt750MiqPPgU-eCY
https://docs.google.com/presentation/d/1GPizbySYMsUhnXSXKvbqV4UhPCvrt750MiqPPgU-eCY


A*

What does Dijkstra’s do?

It finds the shortest path from a source node to every other node.

What if we want to find the shortest path from San Antonio, Texas, to Pierre, South 
Dakota?





Insight: End Vertex

Humans wouldn’t go outward in rings as they look for a path.

Instead, you would immediately go north from San Antonio - why?

Other paths are probably not going to work.

Can we do the same for Dijkstra’s? If so, what exactly are we trying to do?

Dijkstra’s doesn’t take in an end vertex into account during the stages of the 
algorithm.

A* is a way to bias Dijkstra’s summing the distance from the start vertex to the 
node, with a heuristic computing distance from the node to the end vertex.



Introducing the Heuristic

A heuristic is an estimation of the distance between a node and the end vertex.

Why can’t we just use the actual value between the node and the end vertex?

For example, if we’re going from San Antonio, Texas to Pierre, South Dakota, then 
we should probably head north than going south - which this heuristic could 
account for by finding the geographical distance between the intermediate cities 
visited.

We bias towards exploring up, because even though the distance from the start 
vertex is the same within a circle, accounting for the heuristic breaks that.



Conditions for a Working Heuristic

Admissible:

h(n, e) <= actual distance from n to e

The heuristic needs to underestimate the actual 
distance.

The exact reasoning is a 188 topic, but here’s the 
intuition:

This is the optimistic approach - thinking that 
the heuristic is a shorter distance than it might 
actually be. This means you try more options, 
whereas if the heuristic is a longer distance, you 
may miss what is actually the shortest path.

Consistent:

h(s, e) <= d(s, n) + h(n, e)

Similar to the triangle inequality, the heuristic 
between two points needs to be less than or 
equal to the distance to an intermediate point 
plus the heuristic from the intermediate point to 
the end.
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Kruskal’s

• Central idea: make a sorted list of the edges, then iterate through 
them. For every edge, if they are not connected by a path to the 
existing set (the MST set), add it.

• Runtime:
• You check every edge (at max), so E checks/possible additions

• Each check for a path takes logE time with a disjoint set implementation 
(provided weighted quick union)

• Each check for a path takes V time with a DFS/BFS implementation (look 
through all the vertices)



Dijkstra’s

• There is a fringe of vertices to visit, with a priority queue (priority is 
based on distance from start vertex). We visit vertices and add them 
in our search. For every visit, for every neighbor, we skip if it’s been 
visited, if it’s not in the fringe we add it (with distance), or we update 
the distance if there’s a shorter distance.

• This relaxing process is what is different than Prim’s – in Prim’s the 
distance is just the edge weight; here, it is the distance from the start 
vertex.

• We make up to E updates and adjust the fringe up to V times, making 
runtime ElogV + VlogV (generally can be simplified to ElogV directly)
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