
CS 61BL Heaps and Graphs
Summer 2021 Recurring Section 10: Tuesday August 2, 2021

1 Heaps of Fun
(a) Draw the Min Heap that results if we delete the smallest item from the heap.

0

1

8

9

2

4

6 8

(b) Draw the Min Heap that results if we insert the elements 6, 5, 4, 3, 2 into an

empty heap.

(c) Assume that we have a binary min-heap (smallest value on top) data structure

called MinHeap that has properly implemented the insert and removeMin meth-

ods. Draw the heap and its corresponding array representation after each of

the operations below:

1 MinHeap<Character> h = new MinHeap<>();

2 h.insert('f');

3 h.insert('h');

4 h.insert('d');

5 h.insert('b');

6 h.insert('c');

7 h.removeMin();

8 h.removeMin();

(d) Your friendly TA Sadia challenges you to quickly implement an integer max-

heap data structure. However, you already have your MinHeap and you don’t

feel like writing a whole second data structure. Can you use your min-heap

to mimic the behavior of a max-heap? Specifically, we want to be able to get

the largest item in the heap in constant time, and add things to the heap in

Θ(log n) time, as a normal max heap should.

Hint : Although you cannot alter them, you can still use methods from MinHeap.

Text Box
When inserting, negate it. For removing it, remove it and then negate it to counteract the insert.

2 Heaps and Graphs

2 Graphs

A

B

C

D

E

F G

(a) Write the graph above as an adjacency matrix, then as an adjacency list. What

would be different if the graph were undirected instead?

(b) Write the order in which DFS pre-order graph traversal would visit nodes in

the undirected graph above, starting from vertex A. Break ties alphabetically.

Do the same for DFS post-order and BFS.

Text Box
Matrix:
 A B C D E F G - end node
A 0 1 0 1 0 0 0
B 0 0 1 0 0 0 0
C 0 0 0 0 0 1 0
D 0 1 0 0 1 1 0
E 0 0 0 0 0 1 0
F 0 0 0 0 0 0 0
G 0 0 0 0 0 1 0

Text Box
Adjacency List:
A: {B, D}
B: {C}
C: {F}
D: {B, E, F}
E: {F}
F: {}
G: {F}

Text Box
Matrix/list would be symmetric

Text Box
DFS pre-order: ABCFDE (G)
DFS post-order: FCBEDA (G)
BFS: ABDCEFG

DFS - FIFO
BFS - LIFO

Text Box
Things are added to the queue when stuff is visited; not possible to add to a level 3 without getting to level 2 first

Heaps and Graphs 3

3 Graph Conceptuals
Answer the following questions as either True or False and provide a brief expla-

nation:

1. If a graph with n vertices has n− 1 edges, it must be a tree.

2. Every edge is looked at exactly twice in every iteration of DFS on a con-

nected, undirected graph.

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the

start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always

less than 2.

4. Given a fully connected, directed graph (a directed edge exists between every

pair of vertices), a topological sort can never exist.

Text Box
False - needs to be connected, could have a cycle

Text Box
False - both vertices the edge connects will look at it

Text Box
True - see previous page

Text Box
False - see counterexample

Text Box
Connect the smaller valued node to the bigger valued node, for all nodes, ensuring all of them are connected and it is directed. Resulting topological sort is the nodes in the order from smallest to biggest valued.

	Heaps of Fun
	Graphs
	Graph Conceptuals

