CS 61BL
 Loops and Arrays

1 Looping

What output is produced by the following non standard for loop? Record it exactly. We strongly suggest that you use a table to keep track of the value of k .

```
for (int k = 1; k <= 10; k++) {
    k = k + 1;
    System.out.print(k + " ``);
}
```

Output:

2 While to For

Translate each of the following two while loops into for loops.
Note: You must get both parts correct to get credit for this question.

```
Part One
int k = 0;
while (k < 10) {
    System.out.println(k);
    k = k + 1;
}
```

Select the letter corresponding to the for loop below that is equivalent to the while loop above.

A

```
for (int i = 0; i < 10; i++) {
```

 System.out.println(i);
 \}
B
for (int $\mathrm{i}=0 ; \mathrm{i}<10$; $\mathrm{i}++$) \{
$\mathrm{i}=\mathrm{i}+1$;
System.out.println(i);
\}
C
for (int $\mathrm{i}=1$; $\mathrm{i}<10$; $\mathrm{i}++$) \{
System.out.println(i);
\}

D

```
for (int i = 1; i < 10; i++) {
        i = i + 1;
        System.out.println(i);
}
( ) A
( ) B
( ) C
( ) D
```


Part Two

```
int k = 0;
while (k < 10) {
    k = k + 1;
    System.out.println(k);
}
```

Select the letter corresponding to the for loop below that is equivalent to the above while loop.

A

for (int $i=0 ; i<=10 ; i++$) \{
System.out.println(i);
\}
B
for (int $i=0 ; i<=10 ; i++$) \{
i = i + 1 ;
System.out.println(i);
\}
C
for (int $\mathrm{i}=1$; $\mathrm{i}<=10$; $\mathrm{i}++$) \{
System.out.println(i);
\}
D
for (int $\mathrm{i}=1$; $\mathrm{i}<=10$; $\mathrm{i}++$) \{
i = i +1 ;
System.out. println(i);
\}
() A
() B
() C
() D

3 Arrays

Refer to the following classes:

```
public class Point {
    public int x;
    public int y;
    //implementation
}
public class Line {
    public Point left_endpoint;
    public Point right_endpoint;
    public int slope;
    public Line(Point one, Point two) {
        this.left_endpoint = one;
        this.right_endpoint = two;
    }
    //implementation
}
```

What is printed by the program below? Record it exactly.

```
public class Test {
    public static void main(String [] ars) {
        Line[] line = new Line[2];
        Point p = new Point();
        Point q = new Point();
        Line pq = new Line(p, q);
        line[0] = pq;
        line[0].left_endpoint.x = 1;
        pq = new Line(q, p);
        line[1] = pq;
        line[0].left_endpoint.y = 2;
        line[1] = line[0];
        line[0] = pq;
        line[0].left_endpoint.x = 2;
        line[0].left_endpoint.y = 1;
        System.out.print(line[0].right_endpoint.x + " ");
        System.out.print(line[0].left_endpoint.x + " ");
        System.out.print(line[0].right_endpoint.y + " ");
        System.out.print(line[0].left_endpoint.y);
    }
}
```

Output:

4 Build Code

Part One

Note: You must get both parts correct to get credit for this subpart.
You are writing a program boolean isPrime(int n) which is designed to determine if a number is prime. You know that the definition of a prime number is one that is divisible only by 1 and itself. Assume that n is a positive number and is greater than 1 throughout this entire question.

Which of the following boolean conditions is true for any number $1<\mathrm{x}<\mathrm{n}$ if the number n is prime. () $n \% x==1$

6
$6 \% 2=-0$
$6 \% 3=-0$

7

7% x $=0$
2
3
4
5
6

Which of the following would provide an inefficient but accurate implementation of
the boolean isPrime(int n) method. Note that at least one of the below is correct.
Which of the following would provide an inefficient but accurate implementation of
the boolean isPrime(int n) method. Note that at least one of the below is correct.
Select the letter corresponding to the correct answers).
() $n \% x==x$
in \% x ! = 0
() None of the above
int $x=2$;
while $(x<n)$ \{
if (!condition) \{
return false;
\}
return true;
B
Tor (int $x=2 ; x<n ; x++$) \{
if (!condition) \{
return false;
\}
\}
return true;
x
int $\mathrm{x}=2$; $\mathrm{x}<\mathrm{n}$; $\mathrm{x}++$) \{
if (condition) \{
return true;
\}
\}
return false;
if (!condition) \{

n \% x ! $=0$
!condition
$\mathrm{n} \% \mathrm{x}=0$

Part Two
All of the implementations above are a tad inefficient, so let's make them slightly more efficient! To do so, we will change the loop's stopping condition. The stopping condition for all the implementations above is $\mathrm{x}<\mathrm{n}$. Which of the following stopping conditions are correct and would make the code more efficient?
\longrightarrow Hint: You only need to check the factors until the square root of n

> []$x<=n * n$
> []$x * x<=n$
> []$x * x * x<=n$

$$
\begin{aligned}
& 4<6<9 \\
& 2<\operatorname{sqrt}(6)<3
\end{aligned}
$$

$$
81<91<100
$$

$$
9<\operatorname{sqrt}(91)<10
$$

$$
81<93<100
$$

$$
9<\operatorname{sqrt}(93)<10
$$

Factors (pairs of factors)
Prime Number: one pair of factors (1 and itself)

