
CS61B Spring 2024

B-Trees, LLRBs, Hashing
Exam Prep 07

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

3/6
Project 2A Due

3/8
Lab 7 Due

3/15
Lab 8 Due

CS61B Spring 2024

Content Review

CS61B Spring 2024

B-Trees
B-Trees are trees that serve a similar function to binary trees while ensuring a bushy structure (check: why

don’t BSTs/binary trees generally?). In this class, we’ll often use B-Tree interchangeably with 2-3 Trees.

3 7

4 6 91 2

Each node can have up to 2 items and 3 children. There are variations where these values are higher, known

as 2-3-4 trees (nodes can have up to 3 items and 4 children).

All leaves are the same distance from the root, which makes getting take Θ(log N) time.

CS61B Spring 2024

3 5 7

4

B-Trees

When adding to a B-Tree, you first start by adding to a leaf node, and then pushing the excess items (typically

the middle element) up the tree until it follows the rules (max 2 elements per node, max 3 children per node).

3 7

4 5 91 2 91 2

1 2

6 6

4 96

3 7

5

CS61B Spring 2024

Left Leaning Red Black Trees

LLRBs are a representation of B-trees that we use because it is easier to work with in code. In an LLRB, each

multi-node in a 2-3 tree is represented using a red connection on the left side.

3 7

4 6 91 2

7

3 9

62

41

CS61B Spring 2024

LLRB Rules

Each 2-3 tree corresponds to a (unique) LLRB*. This implies that:

1. The LLRB must have the same number of black links in all paths from root to null (not root to leaf!)

2. A node may not have two red children

3. All red links should be left-leaning

4. Height cannot be more than ~2x the height of its corresponding 2-3 tree

5. Additionally, we insert elements as leaves with red links to their parent node

All these invariants mean that sometimes our LLRB becomes unbalanced (ie. it violates a rule), so we need

some way to fix that.

*2-3-4 trees correspond more generally to regular Red Black Trees, but our focus in 61B is on LLRBs.

CS61B Spring 2024

Why root to null?

Consider the left image below: each leaf is 1 black link away from the root, but it’s not a valid LLRB!

This is because when we convert it to a B-tree, the [3, 7] node will only have 2 children, not 3!

If we check for root-to-null: the right of 3 is 0 black link away, but the other nulls are 1 black link away.

7

3 9

2

3 7

92null

nullnull

null null

CS61B Spring 2024

LLRB Balancing Operations

rotateLeft(A);

A

B

DC

B

DA

C

rotateRight(A);

A

B

D C

B

AD

C

colorFlip(A);

B

A

D C

B

A

D C

we can’t have a right red link

we can’t have 2+ consecutive
(left) red links

we can’t have both child links
of a node be red

CS61B Spring 2024

Hashing
Hash functions are functions that represent objects as integers so we can efficiently use data structures like

HashSet and HashMap for fast operations (ie. get, put/add).

Once we have a hash for our object, we use modulo to find out which “bucket” it goes into. For example, we

can create a hash function for the Dog class by overriding Object’s hashCode():

@Override
public int hashCode() {

return 37 * this.size + 42;
}

Then, when we try to put the dog into a HashSet, the HashSet code might look something like this:

int targetBucket = dog.hashCode() % numBuckets;
addToTargetBucket(dog, targetBucket);

CS61B Spring 2024

CS61B Spring 2024

Hashing
In each bucket, we deal with having lots of items by chaining the items and using .equals to find what we are

looking for. In a HashMap, we’re specifically concerned with equality of keys in key-value pairs (in HashSet,

we only have a value to compare to).

0

1

2

3

<Astro, Jedi>

<Opal, Ali>

<Luna, Elana>

<Fancy, Crystal>

<Tofu, Alexander>

<Artoo, Ali>

**Therefore, it is important that your .equals() function matches the result of comparing hashcodes - if two

items are equal, they must also have the same hashcode**

<Mercan, Ergun>

CS61B Spring 2024

Hashing
The load factor tells us when we should resize. We calculate it by dividing the total number of elements

added by the number of buckets we currently have. When resizing up, if the load factor exceeds some

threshold, we increase the number of buckets we use in the data structure.

Because all elements were initially placed into buckets based on how many buckets were previously

available, we also need to rehash all elements into a potentially new destination bucket when resizing, or else

subsequent calls to get() may fail.*

* Resizing sounds like a linear-time operation…how does that affect the runtimes of our operations?

CS61B Spring 2024

Valid vs. Good Hashcodes

Properties of a valid hashcode:

1) Must be an integer

2) The hashcode for the same object should always be the same

3) If two objects are “equal”, they have the same hashcode

○ Check! What about the reverse?

Properties of a good hashcode:

1) Distributes elements evenly

○ What does this even mean?

CS61B Spring 2024

Worksheet

CS 61B B-Trees, LLRBs, Hashing

Spring 2024 Exam-Level 07: March 4, 2024

1 LLRB Insertions
Given the LLRB below, perform the following insertions and draw the final state of the LLRB. In addition,

for each insertion, write the balancing operations needed in the correct order (rotate right, rotate left, or

color flip). If no balancing operations are needed, write ”Nothing”. Assume that the link between 5 and 3

is red and all other links are black at the start.

5

3

1 4

9

(a) 1. Insert 7

2. Insert 6

3. Insert 2

4. Insert 8

5. Insert 8.5

6. Final state

(b) Convert the final LLRB to its corresponding 2-3 Tree.

2 B-Trees, LLRBs, Hashing

2 Hashing Gone Crazy
For this question, use the following TA class for reference.

1 public class TA {

2 int semester;

3 String name;

4 TA(String name, int semester) {

5 this.name = name;

6 this.semester = semester;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return semester;

16 }

17 }

Assume that the hashCode of a TA object returns semester, and the equals method returns true if and only

if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as depicted in lecture. The

ECHashMap instance begins at size 4 and, for simplicity, does not resize. Draw the contents of map after the

executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA jasmine = new TA(�Jasmine the GOAT�, 10);

3 TA noah = new TA(�Noah�, 20);

4 map.put(jasmine, 1);

5 map.put(noah, 2);

6

7 noah.semester += 2;

8 map.put(noah, 3);

9

10 jasmine.name = �Nasmine�;

11 map.put(noah, 4);

12

13 jasmine.semester += 2;

14 map.put(jasmine, 5);

15

16 jasmine.name = �Jasmine�;

17 TA cheeseguy = new TA(�Sam�, 24);

18 map.put(cheeseguy, 6);

B-Trees, LLRBs, Hashing 3

3 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors and briefly explain why

they are incorrect and in which situations would the bug cause problems.

1 class Timezone {

2 String timeZone; // �PST�, �EST� etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }

	Exam-Level 07 Slides
	examlevel07pdf

