ADTs, Asymptotics II, BSTs

Exam-Level 06

Announcements

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	2/26 Lab 5 Due Homework 2 Due				3/1 Lab 6 Due	
			3/6 Project 2A Due		3/8 Lab 7 Due	

Note: I don't display these during discussion; I draw out concepts on the chalkboard. This is just for future review/my reference.

Content Review

Asymptotics Advice

- Asymptotic analysis is only valid on very large inputs, and comparisons between runtimes is only useful when comparing inputs of different orders of magnitude.
- Use Θ where you can, but won't always have tight bound (usually default to O)
- Reminder: total work done = sum of all work per iteration or recursive call
- While common themes are helpful, rules like "nested for loops are always N²" can easily lead you astray (pay close attention to stopping conditions and how variables update)
- Drop lower-order terms (ie. $n^3 + 10000n^2 5000000 -> \Theta(n^3)$)

Asymptotics Advice

- For recursive problems, it's helpful to draw out the tree/structure of method calls
- Things to consider in your drawing and calculations of total work:
 - Height of tree: how many levels will it take for you to reach the base case?
 - Branching factor: how many times does the function call itself in the body of the function?
 - Work per node: how much actual work is done per function call?
- Life hack pattern matching when calculating total work where f(N) is some function of N

$$0 1 + 2 + 3 + 4 + 5 + ... + f(N) = [f(N)]^2$$

$$0 + 2 + 4 + 8 + 16 + ... + f(N) = f(N)$$

 \blacksquare Rule applies with any geometric factor between terms, like 1 + 3 + 9 + ... + f(N)

Asymptotics Advice

• Doing problems graphically can be helpful if you're a visual learner (plot variable values and calculate area formula):

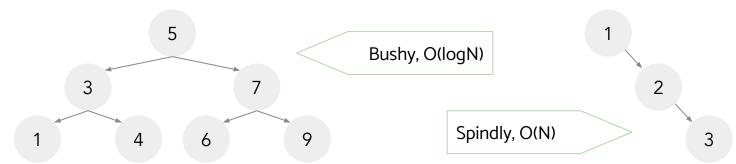
```
for (int i = 0; i < N; i++) {
    for (int j = 0; j < i; j++) {
        /* Something constant */
    }
}</pre>
July Note: No
```

Binary Search Trees

Binary Search Trees are data structures that allow us to quickly access elements in sorted order. They have several important properties:

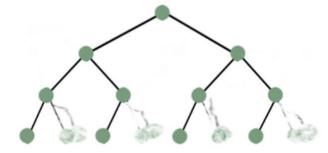
- 1. Each node in a BST is a root of a smaller BST
- 2. Every node to the left of a root has a value "lesser than" that of the root
- 3. Every node to the right of a root has a value "greater than" that of the root

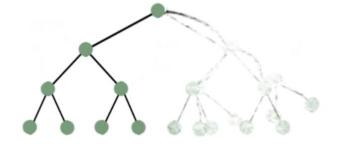
BSTs can be bushy or spindly:



If Thanpos snapped his fingers at a binary tree, would it end up

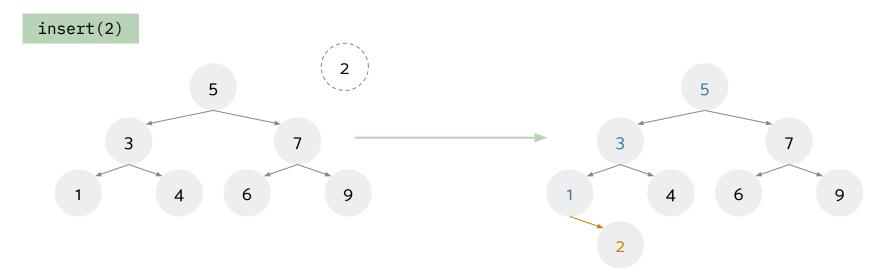
like this or like this?





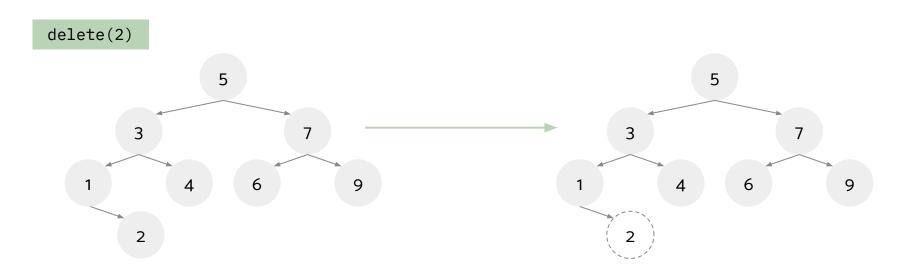
BST Insertion

Items in a BST are always inserted as leaves.



BST Deletion

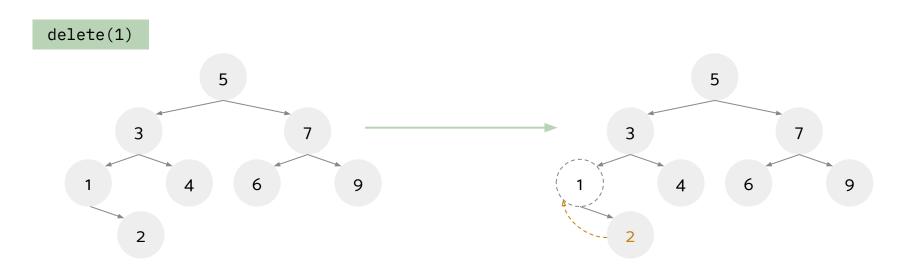
Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:



In this case, the node has no children so deletion is an easy process.

BST Deletion

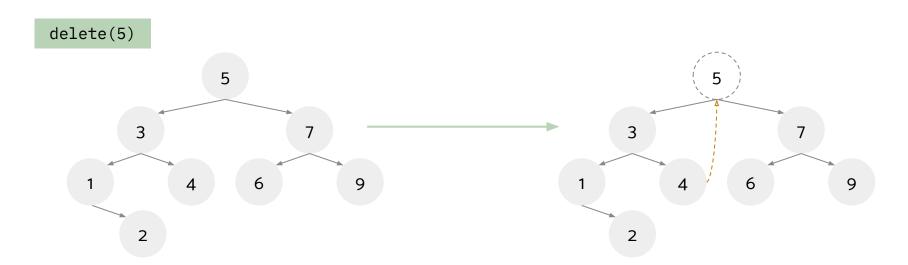
Items in a BST are always deleted via a method called **Hibbard Deletion**. There are several cases to consider:



In this case, the node has one child, so it simply replaces the deleted node, and then we act as if the child was deleted in a recursive pattern until we hit a leaf.

BST Deletion

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:



In this case, the node has two children, so we pick either the leftmost node on in the right subtree or the rightmost node in the left subtree.

Worksheet

Spring 2024

Exam-Level 06: February 26, 2024

Finish the Runtimes

Below we see the standard nested for loop, but with missing pieces!

```
for (int i = 1; i < ____; i = ____) {
       for (int j = 1; j < ____; j = ____) {
2
          System.out.println("Circle is the best TA");
       }
   }
```

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math.pow helpful.

```
(a) Desired runtime: \Theta(N^2)
    for (int i = 1; i < N; i = i + 1) { n \in \mathbb{N}, such as i \in \mathbb{N}
         for (int j = 1; j < i; j = (1 + k)) {
              System.out.println("This is one is low key hard");
         }
    }
(b) Desired runtime: \Theta(\log(N))
    for (int i=1;\ i< N;\ i=i*2) { heN
         for (int j = 1; j < \underline{k}_{-}; j = j * 2) {
              System.out.println("This is one is mid key hard");
         }
    }
(c) Desired runtime: \Theta(2^N)
    for (int i = 1; i < N; i = i + 1) { Geale building sum
         for (int j = 1; j < Mathematical), <math>j = j + 1) {
              System.out.println("This is one is high key hard");
                           Could also do 200; does that N times which sums to
         }
    }
(d) Desired runtime: \Theta(N^3)
    for (int i = 1; i < \frac{n_{\text{theor}(2i)}}{2i}; i = i * 2) {
         for (int j = 1; j < N * N; j = \underbrace{j * l}_{--}) {
              System.out.println("yikes");

role loop independent of
each other
    }
```

2 Asymptotics is Fun!

(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer in terms of N. Feel free to draw out the recursion tree if it helps.

```
void g(int N, int x) {

if (N == 0) {

return;

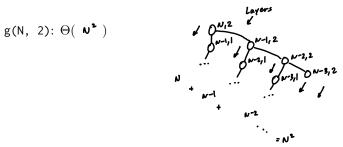
}

for (int i = 1; i <= x; i++) {

g(N - 1, i);

}

g(N, 1): Θ(N)</pre>
```



(b) Suppose we change line 6 to g(N-1, x) and change the stopping condition in the for loop to $i \le f(x)$ where f returns a random number between 1 and x, inclusive. For the following function calls, find the tightest Ω and big O bounds. Feel free to draw out the recursion tree if it helps.

3 Is This a BST?

In this setup, assume a BST (Binary Search Tree) has a key (the value of the tree root represented as an int) and pointers to two other child BSTs, left and right.

(a) The following code should check if a given binary tree is a BST. However, for some trees, it returns the wrong answer. Give an example of a binary tree for which brokenIsBST fails.

```
public static boolean brokenIsBST(BST tree) {
    if (tree == null) {
        return true;
    } else if (tree.left != null && tree.left.key > tree.key) {
        return false;
    } else if (tree.right != null && tree.right.key < tree.key) {
        return false;
    } else {
        return brokenIsBST(tree.left) && brokenIsBST(tree.right);
    }
}</pre>
```

(b) Now, write isBST that fixes the error encountered in part (a).

Hint: You will find Integer.MIN_VALUE and Integer.MAX_VALUE helpful.

Hint 2: You want to somehow store information about the keys from previous layers, not just the direct parent and children. How do you use the parameters given to do this?