Inheritance

Exam-Level 03

CS 61B Spring 2024

Announcements

Content Review

CS 61B Spring 2024

Classes

Subclasses (or child classes) are classes that inherit from another class. This means that they have access
to all of the non-private functions and variables of their parent class in addition to any functions and
variables defined in the child class.

Example: Corgi, Pitbull

Superclasses or parent classes are classes that are inherited by another class.
Example: Dog

Dog

Corgi Pitbull

CS 61B Spring 2024

Fun with Methods

Method Overloading is done when there are multiple methods with the same name, but different

parameters.
public void barkAt(Dog d) { System.out.print(“Woof, it’'s another dog!”); %
public void barkAt(CS61BStaff s) { System.out.print(“Woof, what is this?”); %

* Food for thought: what is an advantage of method overloading? Hint: think about System.out.print

Method Overriding is done when a subclass has a method with the exact same function signature as a
method in its superclass. It is usually marked with the @0verride tag.

In Dog class:
public void speak() 3 System.out.print(“Woof, I'm a dog!"”); %

In Corgi Class, which inherits from Dog:

@Override
public void speak() {1 System.out.print(“Woof, I'm a coxgi!"”); %

CS 61B Spring 2024

Interfaces

Interfaces are implemented by classes. They describe a narrow ability that can apply to many classes that
may or may not be related to one another. This is incredibly useful if you're building for other people.

They do not usually implement the methods they specify, but can do so with the default keyword.
Interface methods are inherently public, which must be specified in the subclass that implements them

(subclasses must override and implement non-default interface methods).

Interfaces cannot be instantiated. (ie. Friendly f = new Friendly(); does not compile)

Friendly Cute

CS61BStaff Dog

CS 61B Spring 2024

Interfaces vs. Classes

e A class can implement many interfaces and extend only one class
e Interfaces tell us what we want to do but not how; classes tell us how we want to do it

e Interfaces can have empty method bodies (that must be filled in by subclasses) or
default methods (do not need to be overridden by subclasses)

o With extends, subclasses inherit their parent’s instance and static variables, methods
(can be overridden), nested classes

o But not constructors!

o Use super to refer to the parent class

CS 61B Spring 2024

Implementation

interface Cute {...} Friendly Cute

interface Friendly {...%}

CS61B Staff Dog

class CS61BStaff implements Friendly {...}% K////////\\\\\\\\\

Corgi Pitbull

class Dog implements Cute, Friendly ...}

class Corgi extends Dog i...}%

class Pitbull extends Dog {...%

CS 61B Spring 2024

Static vs. Dynamic Type

A variable’s static type is specified at declaration, whereas its dynamic type is specified at instantiation
(e.g. when using new).

Dog d = new Corgi();

Static type of d is Dog Dynamic type of d is Corgi

The static and dynamic type of a variable have to complement each other or else the code will error. For
example, a Dog is not necessarily a Corgi, so Corgi ¢ = new Dog(); will not compile.

General rule of thumb: Given LHS = RHS, is RHS quaranteed to be a LHS?

Though interfaces cannot be instantiated, they can be static types (ie. Cute ¢ = new Corgi();)
CS 61B Spring 2024

Casting

Casting allows us to tell the compiler to treat the static type of some variable as whatever
we want it to be (need to have a superclass/subclass relationship). If the cast is valid, for that
line only we will treat the static type of the casted variable to be whatever we casted it to.

Animal a = new Dog();

Dog d = a; // Compiler error: an animal is not a dog

Dog d = (Dog) a; // Valid cast: an animal could reasonably be a dog
d = new Dog();

a = (Animal) d // Valid cast: a dog definitely is-a animal

Cat ¢ = new Cat();

d = (Dog) c; // Compiler error: a cat is definitely not a dog
a =c;
d = (Dog) a; // Cast compiles because an animal could reasonably be a dog.

During runtime, errors

CS 61B Spring 2024

All these concepts - What's the point?

It allows for Subtype Polymorphism. (You'll also see this in lecture this week).
Polymorphism means “providing a single interface to entities of different types”

Example:

Consider a variable deque of static type Deque:

When you call deque.addFirst (), the actual behavior is based on the dynamic type.
Deque deque = new LinkedListDeque();// Runs LinkedListDeque’s addFirst
Deque deque = new ArrayDeque();// Runs ArrayDeque’'s addFirst

Java automatically selects the right behavior using what is sometimes called “dynamic method
selection”.

CS 61B Spring 2024

Dynamic Method Selection

Your computer. . .
@ Compile Time, we only care about static type of the invoking / calling instance:
1. Check for valid variable assignments
2. Check for valid method calls (only considering static type and static types superclass(es))

a. Lock in exact method signature as soon as we find an adequate one, traversing parent classes
3. If nothing found, compiler error

@ Run Time, we care about dynamic type of the invoking / calling instance:
1. If the locked-in method is static, skip the step below and just run that method
2. Check for overridden methods
a. Does the locked-in method signature have an identical one in the dynamic class or the dynamic
class’s parent classes?
3. Ensure casted objects can be assigned to their variables

CS 61B Spring 2024

Variable assignment rules

Involves casting?

yes

A x = (B) y;
Is B in a superclass-subclass
relationship with y’s static type?
(No siblings)

no

A x =y,

Is the static type of y A, ora

subclass of A?

no
yes

no

Is B A, or a subclass
of A? no

Compiler error

Runtime error

no
(Dls the dynamic type of y /

B, or a subclass of B?

yes

OK!

CS 61B Spring 2024

Worksheet

CS 61B Spring 2024

CS 61B Inheritance
Spring 2024 Fxam-Level 03: February 6, 2023

| Forget It, We Ball

The 61Ballers are organizing the best IM team at Cal, but they first need your help with some inheritance

issues...
Suppose we have the Person interface and the Athlete, and SoccerPlayer classes defined below.

interface Person {
void speakTo(Person other);
default void watch(Athlete other) { System.out.println("wow"); 3}

public class Athlete implements Person {
@Override
public void speakTo(Person other) { System.out.println("i love sports"); }
@0verride
public void watch(Athlete other) { System.out.println("ball is life"); }

public class SoccerPlayer extends Athlete {
@Override
void speakTo(Person other) { System.out.println("join 61ballers"); }

Read the code below and fill in the table on the next page.

For lines 1-11, write down the static type of the object being created in the “Compile Time (Static)” column,
the dynamic type in the “Runtime (Dynamic)” column. For the output, write nothing if there are no errors,

write CE if there’s a compiler error, and write RE if there’s a runtime error.

For lines 13-25, identify the method that’s been saved during compile time, and write down its name and the

”

class it belongs to in the “Compile Time (Static)” column. Identify the method executed at runtime, and
write down its information in the “Runtime (Dynamic)” column. Write output in the “Output” column, if
anything. Write CE if there is a compiler error and RE if there is a runtime error. If a line errors, continue

executing the rest of the lines.
Perton is an inkrlocr, no inhantes Vien ponginedo
Person ayati = new Person();

Athlete aniruth = new SoccerPlayer();
itk aghing, s wil ot e du o stobc drfe
SoccerPlayer vanessa = aniruth;r °
(& Ly Jo?ﬂa [Mﬂ[w) aninth

Person eric = new Athlete();

Athlete shreyas = new Athlete();

20

21

22

23

24

25

2 Inheritance

SoccerPlayer yaofu =

new SoccerPlayer();

Allele

SotgerPlayer

anevhe L —>

Peaton

eie L —

Athlsle

Penon (Alld) Atk Pduleke
eric.watch(aniruth); e L——> Pritlele
Aticle (Alelc) Sucrorbloer e layer
shreyas. speakTo(yaofu), sl (—— ° e oy
SWUWW‘W) Penon &— dynamic bype of permmeler
yaofu.speakTo(eric); is wyolevant
Mkk[ngrﬂmr) Peon
((Athlete) yaofu).speakTo(eric);
Porsen (Soccer Ploge)
((Person) yaofu). speakTo(erlc),
Mulele CMI!"-.) KCM% she 4\{'1 .s IjM'!J‘
((Athlete) eric). speakTo(shreyas),
Closs Gk Bleeption | dynemic. Hype €= Shhe Hype
Soccer Nayer (A\’hlcb.» SotzorPloyer
((SoccerPlayer) eric). watch(yaofu),
Line Compile Time (Static) Runtime (Dynamic) Output
1
ct na CE
3
Piulete Secser Poyer nin
5
ce wio cE
7
Peaon Attlele nle
9
Attiele Aulete nle
11
Soacer Playor Socter Ployer o
13
Perion: waleln (Acke oHasr) Malcle. walohn (Altlete olter) bl W Gk
15
Mutcke qpeckTo (Pt) o— T love sperhs
17
SoaterMoyer. speshTo (Pon ofted e Goin blballers
19
Plalele. spewlsTo (Peton o) St Plagur- 5pesdTe (Petun othr) qoin 6l ballors
21
Midokc- speskTo (Roton other) SottorPlyor. spos To(Pormn e o Glbales
23
Adtede. spollTa (Peaom o'“"') e 1 love r’)u‘h
25
Alele. wdch (Atulele ot RE & Closs Cask Exapbion pe

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Inheritance 3

2 LlSt Inherltance no el e of LastTutlVode not¥ boing of dee end
Modify the code below so that the max method of DMSList|works properly. Assume all numbers inserted
into DMSList ar and we only insert using insertFront. You may not change anything in the given
code. You may only fill in blanks. You may not need all blanks. (Spring '16, MT1)

public class DMSList {
private IntNode sentinel;

public DMSList() {

public class IntNode {
public int item;
public IntNode next;
public IntNode(int i, IntNode h) {
item = i;
next = h;

wely con dew vt Ye nest one
public int max() { vearsity pres

return Math.max(item, next.max());

class LastIntNode extends IntNode {
public LastIntNode() {

Svm'[ﬂ, vwl") ;

@Override & wusa Sine foe is w nest mede on M st wode, or Nl Pointer Eraption

public int max() {

om0 .
} T

} siad all valwes ave positive

/* Returns @ if list is empty. Otherwise, returns the max element. */
public int max() {
return sentinel.next.max();

public void insertFront(int x) { sentinel.next = new IntNode(x, sentinel.next); }

	aniruth Exam Level 03 Slides
	examlevel03pdf

