Sorting

Exam Prep 11

5o
CS61B Spring 2024 \ 2

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
4/12
Lab 10 due
4/15
Project 3A due

CS61B Spring 2024 \d

Content Review

)
CS61B Spring 2024 N

Insertion Sort

Insertion sort iterates through the list and swaps items backwards as necessary to maintain sortedness.

35124

Runtime: O(N?)

CS61B Spring 2024 \d

Selection Sort

Selection sort finds the smallest remaining element in the unsorted portion of the list at each time step and
swaps it into the correct position.

35124

Runtime: O(N?)

CS61B Spring 2024 \d

Merge Sort

Merge sort splits the list in half, applies merge sort to each half, and then merges the two halves together in a
zipper fashion.

35124

Runtime: ©(NlogN)

CS61B Spring 2024 \d

Quicksort

Quicksort picks a pivot (ie. first element) and uses Hoare partitioning to divide the list so that everything
greater than the pivot is onits right and everything less than the pivot is on its left.

35124

Runtime: Average case O(NlogN), slowest case O(N?) (dependent on pivot selection)

CS61B Spring 2024 \d

Heap Sort

Heapsort heapifies the array into a max heap and pops the largest element off and appends it to the end until
there are no elements left in the heap. You can heapify by sinking nodes in reverse level order.

35124

Runtime: O(NlogN)

CS61B Spring 2024 \d

Summary for comparison sorts

Stability: a sortis stable if duplicate values remain in the same relative order after sorting as they were
initially. In other words, is 2a guaranteed to be before 2b after sorting the list [2a, 2b, 1]?

Worst Case Best Case Stable?
Selection Sort O(N?) O(N?) No
Insertion Sort O(N?) O(N) Yes
Merge Sort O(NlogN) O(NIogN) Yes
Quicksort O(N?) O(NlogN) No*
Heapsort O(NlogN) O(N) No

Try reasoning out or coming up with examples for these best and worst case runtimes!

*with hoare partitioning CS61B Spring 2024 v

Worksheet

)
CS61B Spring 2024 N

CS 618 Sorting
Spring 2024 Fxam-Level 11: April 8, 2024

| Identifying Sorts

Below you will find intermediate steps in performing various sorting algorithms on the same input list.
The steps do not necessarily represent consecutive steps in the algorithm (that is, many steps are missing),
but they are in the correct sequence. For each of them, select the algorithm it illustrates from among the
following choices: insertion sort, selection sort, mergesort, quicksort (first element of sequence as pivot), and

heapsort. When we split an odd length array in half in mergesort, assume the larger half is on the right.
Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000
(a) 1429, 3291, 7683, 1337, 192[594, 4242, 9001, 4392, 129, 1000 € p¥ede fot lire

1429, 3291 192, 1337, 7683| 594, 4242, 9001| 129, 1000, 4392 > e sork
192, 1337, 1429, 3291, 7683\ 129, 594, 1000, 4242, 4392, 9001

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392
192, 594, 129, 1000, 1337, 14R9, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1437, 14R9, 3291, 4242, 4392, 7683, 9001

(c) 1337, 1429, 3291, 7683\ 192, 594, 4242, 9001, 4392, 129, 1000
192, 1337, 1429, 3291, 7683\ 594, 4242, 9001, 4392, 129, 1000 Tuseckon Sort
192, 594, 1337, 1429, 3291, 7683[4242, 9001, 4392, 129, 1000
Sorted aloawoy >
(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192
7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129l 9001 Heap Sort

’
yeﬁ"’ﬁg, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429(7683, 9001

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

2 Sorting

2 Conceptual Sorts

Answer the following questions regarding various sorting algorithms that we’ve discussed in class. If the
question is T/F and the statement is true, provide an explanation. If the statement is false, provide a
counterexample.

(a) We have a system running insertion sort and we find that it’s completing faster than expected. What
could we conclude about the input to the sorting algorithm?
A[.a.L/ wodly Soded
Rmbine s (Ve W), b b invesions 50 € O() insion
Vbl &r dodbase nsertion

w:“ ‘n 'Pld'

(b) Give a 5 integer array that elicits the worst case runtime for insertion sort.
sS4 32l
Rewnc orber) oppesie of &)

(c) (T/F) Heapsort is stable.
False - M{(ﬁ'ul’u‘m con shofF dings aromd arbireily

(d) Compare mergesort and quicksort in terms of (1) runtime, (2) stability, and (3) memory efficiency for
sorting linked lists.

L3

Work gase rombne * Moty N

Shitliy: wage B ik it

Sorting 3

(e) You will be given an answer bank, each item of which may be used multiple times. You may not need

to use every answer, and each statement may have more than one answer.

A. QuickSort (in-place using Hoare partitioning and choose the leftmost item as the pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer is none of them, use N
indicating none of the above. All answers refer to the entire sorting process, not a single step of the

sorting process. For each of the problems below, assume that N indicates the number of elements being

sorted.
. Nb Mﬂ" cont) ﬂ\"‘ Mb
{-sdu*\'o-\ is o) iE seked
ME,.C Bounded by Q(N log N)lower bound. Respiwrt: V€ Unbonl Hems
8 Has a worst case runtime that is asymptotically better than Quicksort’s worstcase
runtime. Boln me MlgN wont cwe rafive

. Tuseckon SWHEs new Hem bachirds dum doie
A8 D Never compares the same two elements twice. " "o 4 oeh sety vever e dgein

Margs® Doy painsic 4o ware solis

N (None) Runs in best case ©(log N)time for certain inputs
00D h dek al ilems ot Lot wve

4 Sorting

3 Bears and Beds

In this problem, we will see how we can sort “pairs” of things without sorting out each individual entry.
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help them place their bear
customers in the best possible beds to improve their experience. Now, a little known fact about bears is that
they are very, very picky about their bed sizes: they do not like their beds too big or too little - they like
them just right. Bears are also sensitive creatures who don’t like being compared to other bears, but they
are perfectly fine with trying out beds.

The Problem:
e Inputs:
— A list of Bears with unique but unknown sizes
— A list of Beds with unique but unknown sizes
— Note: these two lists are not necessarily in the same order
e Output: a list of Bears and a list of Beds such that the ith Bear is the same size as the ith Bed
e Constraints:

— Bears can only be compared to Beds and we can get feedback on if the Bed is too large, too small,
or just right.

— Beds can only be compared to Bears and we can get feedback on if the Bear is too large, too
small, or just right for it.

/Wn{' Yoveds usn'no qun'b[i{lf{'

— Your algorithm should run in O(N log N) time on average.

Pit o pivt dow Beas

	Exam-Level 11 Slides
	examlevel11pdf

