Graphs I, Tries

Exam Prep 10

5o
CS61B Spring 2024 \ 2

Announcements

Sunday

Monday

4/1
Project 2B/2C due

Tuesday

Wednesday

Thursday

Friday Saturday

4/5
Lab 09 due

4/12
Lab 10 due

CS61B Spring 2024

Content Review

)
CS61B Spring 2024 N

Topological Sort

Topological Sort is a way of transforming a directed acyclic graph into a linear ordering of vertices, where for
every directed edge u v, vertex u comes before v in the ordering.

CS61B Spring 2024 \d

Topological Sort

Key Ideas:
- Not having a topological sort indicates a that the graph has directed cycle (only works on DAGs)
- Most DAGs have multiple topological sorts
- Source node: a node that has no incoming edges
- Sink node: a node that has no outgoing edges

2 » e

CS61B Spring 2024 \d

Graph Algorithm Runtimes

For a graph with V vertices and E edges:

Graph Algorithm Runtime
DFS O(V+E)
BFS O(V+E)
Dijkstra's O((V+E)logV)
A* O((V+E)log V)
Prim’s O((V+E)logV)
Kruskal's O(E log E)

CS61B Spring 2024 \d

Tries

Tries are special trees mostly used for language tasks.

Each node in a trie is marked as being a word-end (a “key”) or not, so you can quickly check whether a word
exists within your structure.

o
o

CS61B Spring 2024 \d

Trie Operations

Longest prefix of: follow the trie until the letters no longer match, keeping track of the most recent “end”

longestPrefixOf(" catchall”) —
“catch” @

CS61B Spring 2024 \d

Trie Operations

Keys with prefix: follow until the end of the prefix, then traverse all words below that node.

keysWithPrefix(“ca”) — “catch”,
llcatll @

CS61B Spring 2024 \d

Worksheet

)
CS61B Spring 2024 N

CS 618 Graphs H, Tries
Spring 2024 Fxam-Level 10: April 1, 2024

| Multiple MSTs

Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

(a) For each subpart below, select the correct option and justify your answer. If you select “never” or
“always,” provide a short explanation. If you select “sometimes”, provide two graphs that fulfill the
given properties — one with multiple MSTs and one without. Assume G is an undirected, connected
graph with at least 3 vertices.

Holkiple One

e

e

1. If some of the edge weights are identical, there will
(O never be multiple MSTs in G.
@ sometimes be multiple MSTs in G.

(O always be multiple MSTs in G.

Justification: Conelines veqires examples both ways

2. If all of the edge weights are identical, there will
(O never be multiple MST's in G.
—®
@sometimes be multiple MSTs in G.

(O always be multiple MSTs in G.

Justification: Sawe as previovs

(b) Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge
weights are identical. Find the maximum and minimum number of MSTs in G and explain your

reasoning.
e is e 3
Minimum: ___3 sallest simple edoe o fe is lemght
I o e oo
Maximum: __#-l____ any of e edges Lmed in P

P T o gk Wkt b add e Lot edpe
Justification: Crede o ving =Lk beey Hen @) # of edges, not verkees

£ longh £ b L aphine £r
Max ;

Tﬂﬁ'gk".' Cl{0(¢ °

N e ‘F ‘h‘ s J‘ v
ST, Pw“' ° o g"

2 Graphs II, Tries

(c) Tt is possible that Prim’s and Kruskal’s find different MSTs on the same graph G (as an added exercise,
construct a graph where this is the case!). Given any graph G with integer edge weights, modify the
edge weights of G to ensure that (1) Prim’s and Kruskal’s will output the same results, and (2) the
output edges still form a MST correctly in the original graph. You may not modify Prim’s or Kruskal’s,
and you may not add or remove any nodes/edges.

Hint: Look at subpart 1 of part a.

\os, polontiolly there ohl e

R L
[ho tegh Hem ramdosly, od add T P T

2 Topological Sorting for Cats

The big brain cat, Duncan, is currently studying topological sorts! However, he has a variety of curiosities
that he wishes to satisfy.

(a) Describe at a high level in plain English how to perform a topological sort using an algorithm we already
know (hint: it involves DFS), and provide the time complexity.

Revene ehses, Heun postode- (con't preordac; Sine oAl exploce

DFS ambine, SO V+E rwline

(b) Duncan came up with another way to possibly do topological sorts, and he wants you to check him on

its correctness and tell him if it is more efficient than our current way! Let’s derive the algorithm.

1. First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one

source node, and at least one sink node.
Trook £ buth by cobdiction
Sink: keep Usi¥ag verlies— atl- U Bues) wuk epent Soure: Revene, apply sinbe rtaoning

qcl: avt DA 4

2. Duncan wishes to extend from the Graph class to create a DAG class. He wants to eventually add
a method that enables topological sorting, but needs to write some helper methods first! Complete
the following instance methods computeInDegrees and findAllSourceNodes().

Graphs 11, Tries 3
public class Graph {

public Graph(int V) // Create empty graph with v vertices, numbered @ to V - 1
public void addEdge(int v, int w) // Adds edge from v to w

Iterable<Integer> adj(int v) // Gets vertices adjacent to v

int V() // Number of vertices

int E() // Number of edges

public class DAG extends Graph {

// Computes the number of incoming edges to a vertex
public int[] computeInDegrees() {

orde ot | int[] indegree = _new W [VO)] ;
CowpleRion

{

2 for (_int_verled =0, verkex <UCY, vedey +¢ Y {

2 for (Jmt_odjVeder > adjlveden)) {

t _indagreel adjVeres) 4= |

return indegree;

// Finds all source nodes in the graph
public List<Integer> findAllSourceNodes(int[] indegree) {

List<Integer> sources = new ArraylList<>();
o M Lt of indegee awsy
| for (__¥ verled =07, verkx <UOY; vedey +¢) {

2 if (Lindeqee [vededd ==0 Y {

3 __Souvies. M(w@,

9 return _goures

}
Runtime of computeInDegrees is: (V+E) - comider ol wrttes and elges

Runtime of findAllSourceNodes is: 8() - & lowp

4

Graphs II, Tries

3. Now, make the following observation: If we remove all of the source nodes from a DAG, we are
guaranteed to have at least one new source node. Inspired by this fact, and using the previous

parts, complete the topologicalSort() method. What is its runtime?

public class DAG extends Graph {
public int[] computeInDegrees() { ... }
public List<Integer> findAllSourceNodes(int[] indegree) { ... }

public List<Integer> topologicalSort() {

List<Integer> sorted = new ArrayList<>();
eee ooy and sowze nodes!

1 i = . lines 4 Creade nd
| iMT3 indegee = Comprie TnDegues ()} e—-l’*'* b e

so @

// Hint: add elements from another iterable here
2 Queue<Integer> sources = new ArrayDeque<>(_{fid Ml Soulu_&._lg(i-dcra);

9 while (__souraes.length() 2 O) {
fl\ko deleles Hie some
int source = sources.poll();

% sorled. ads (souree),

for (Ut _ adVedec ® odj (source)) {

_indegeee CAJ)V‘,;“] -

if (_indeceladjVeded == 0) {

Sources. add Cul’.\lukb

}

return sorted;

b

Runtime of topologicalSort is: V4E

4. Venti, the bard from Mondstadt is allergic to cats. He wanted to trick Duncan and created a
DAG object, but it actually represents a graph with a cycle! How can you modify the method
topologicalSort() above to detect whether the graph has a cycle?

Chech i indegee avmy s womeo eleets ona all souer ave vided PiF dtee 03, Hen cycle

3 A Wordsearch

Graphs 11, Tries 5

Given an N by N wordsearch and N words, devise an algorithm (using pseudocode or describe it in plain

English) to solve the wordsearch in O(N?). For simplicity, assume no word is contained within another, i.e.

if the word ”bear” is given, "be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving intuition, see below for an

example wordsearch. Note that the below wordsearch doesn’t follow the precise specification of an N by N

wordsearch with N words, but your algorithm should work on this wordsearch regardless.

Example Wordsearch:
c M U H O S A E D

T R A T H A N K A

ajay
Y E A E V A R U E
crystal
A A A | M E L C R grace
luke
N H D J Y U A C | e
T Y S A A R S U C sherry
sohum
A R S | G Y E S A tony

anton
eric
isha
naama
sarina
shreyas
sumer
vidya

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation helpful. Recall that

longestPrefixOf accepts a String key and returns the longest prefix of key that exists in the Trie, or null

if no prefix exists.

LOX worde ek Tue

2
lebler = N
2. ho A vord s""'("ll““"' "7
3, for n?ﬂw ek H s i Tdey i€ 30 g in € divckons and erped
. Cacl)

bo(v-2 +¢) 2o(w)

	Exam-Level 10 Slides
	examlevel10pdf

