Lab 9: Priority Queues and Heaps
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Announcements

e Lab 9 -due Friday 03/18

e HW 6 - due Tuesday 03/29

e Project 2: Ataxx
o Checkpoint - due Friday 03/18
o Project - due Friday 04/01
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Theory - Priority Queues



Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was
enqueued longest ago.
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Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was
enqueued longest ago.

PriorityQueue: A Queue that prioritizes certain items (e.g hospital ER)
Examples:

e OS Process Scheduling

e Sorting

e Greedy algorithms (e.g. “shortest path”)



PriorityQueue ADT

insert(val, priority) Adds va' to the queue with priority value
priority

peek() / poll() Returns the item in the queue with the
highest priority.

e Min priority queue: highest priority == lowest priority value
o There’s also a “max priority queue” / max heap, where highest priority value is highest priority
e No specification on how to deal with ties



PriorityQueue ADT

insert(val, priority) Adds va' to the queue with priority value
priority

peek() / poll() Returns the item in the queue with the
highest priority.

e Highest Priority == Lowest Priority Value

peek
poll
insert(E, 1)
poll
insert(F, 5)
poll

peek poll




PriorityQueue ADT

insert(val, priority) Adds va' to the queue with priority value
priority

peek() / poll() Returns the item in the queue with the
highest priority.

e Highest Priority == Lowest Priority Value

peek >
poll >
insert(E, 1)
poll >
insert(F, 5)
poll >

peek poll




Theory - Heaps



Review: BST Properties

BST Property (recursive invariant)
e Left Children are smaller
e Right Children are larger




In Contrast: Heap Properties

BST Property (recursive invariant)
e Left Children are smaller
e Right Children are larger

Min-Heap Property (recursive invariants)
e All Children are larger
Completeness Property
e Tree has no “gaps” (left-packed)



Does it Heap?



Does it Heap?
ﬁe © 0
oNORO SEE
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No - fails both invariants No, fails min-heap invariant.



Heap Properties

e peek - where’s the element with the smallest

° priority?
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Heap Properties

e peek - where’s the element with the smallest

° priority?
e e Top of the heap!

e Heap height with N items?



Heap Properties

peek - where's the element with the smallest
priority?

Top of the heap!
Heap height with N items?

Count total # of elements in full heap with K layers
- # of elements in each layer doubles

N = 20+21+  +2K1 = 2K 9,
IgN =Ig 2K-1 =g 2€ = K



Theory-Implementation:
removeMin



removeMin

Find min

§



removeMin

Find min Swap with last child
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removeMin

Find min Swap with last child Delete and save previous min

“Bubble Down” to fix heap invariant
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removeMin

Find min Swap with last child Delete and save previous min
| 3
ORO DO w-Q
“Bubble Down” to fix heap invariant Return min

e return°
(‘ © o ©




“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}
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“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

e



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

A

Runtime?



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

A

Runtime? Worst case, swap through every layer. Heap height is ~Ig n, so runtime is O(Ig n).



Theory-Implementation:
insert



insert

insert(1).
Where should the new item go first?
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insert(1).
Where should the new item go first?

Fill last “hole” with 1.



insert

insert(1).
Where should the new item go first?

“‘Bubble Up” to fix heap invariant

G e

Fill last “hole” with 1.



“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent
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“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent
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“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent
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“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

}
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“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent




“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

Runtime?



“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

Runtime? Worst case, swap through every layer. Heap height is ~Ig n, so runtime is O(Ig n).




Implementation: array



Heap: Implementation

Fill an array in level-order of the tree (starting from index 1):

heap:

%]

A

B

C

D

E

F

G

H

I

J

K

L
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h[oe]

h[1]

h[2]

h[3]

h[4]

h[5]

h[é]

h7]

h[8]

h[9]

h[10]

h[11]

h[12]

h[13]

h[14]

h[15]




Heap: Implementation

Fill an array in level-order of the tree (starting from index 1):

heap: Z A B C D E F G H I J K L @ % @

h[oe] h[1] h[2] h[3] h[4] h[5] h[é] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

Node at index 1 - getting its...
e Parent?
e Left child?
e Right child?



Heap: Implementation

Fill an array in level-order of the tree (starting from index 1):

heap: Z A B C D E F G H I J K L @ % @

h[oe] h[1] h[2] h[3] h[4] h[5] h[é] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

Node at index 1 - getting its...
e Parent? i / 2, rounding down
e Left child? 21
e Rightchild? 24 + 1



