
Lab 9: Priority Queues and Heaps



Announcements

● Lab 9 - due Friday 03/18
● HW 6 - due Tuesday 03/29
● Project 2: Ataxx

○ Checkpoint - due Friday 03/18
○ Project - due Friday 04/01





Theory - Priority Queues



Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was 
enqueued longest ago.



Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was 
enqueued longest ago.

PriorityQueue: A Queue that prioritizes certain items (e.g hospital ER)
Examples:



Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was 
enqueued longest ago.

PriorityQueue: A Queue that prioritizes certain items (e.g hospital ER)
Examples:
● OS Process Scheduling
● Sorting
● Greedy algorithms (e.g. “shortest path”)



PriorityQueue ADT

● Min priority queue: highest priority == lowest priority value
○ There’s also a “max priority queue” / max heap, where highest priority value is highest priority

● No specification on how to deal with ties

insert(val, priority) Adds val to the queue with priority value 
priority

peek() / poll() Returns the item in the queue with the 
highest priority.



PriorityQueue ADT
insert(val, priority) Adds val to the queue with priority value 

priority

peek() / poll() Returns the item in the queue with the 
highest priority.

● Highest Priority == Lowest Priority Value

● peek
● poll
● insert(E, 1)
● poll
● insert(F, 5)
● poll

peek poll
A (p:3)

D (p:7)

C (p:4)

B (p:2)



PriorityQueue ADT

● Highest Priority == Lowest Priority Value

insert(val, priority) Adds val to the queue with priority value 
priority

peek() / poll() Returns the item in the queue with the 
highest priority.

peek poll
A (p:3)

D (p:7)

C (p:4)

B (p:2)

● peek → B
● poll → B
● insert(E, 1)
● poll → E
● insert(F, 5)
● poll → A



Theory - Heaps



Review: BST Properties

3

1

5 8

6

4 97

2

BST Property (recursive invariant)
● Left Children are smaller
● Right Children are larger



In Contrast: Heap Properties
BST Property (recursive invariant)

● Left Children are smaller
● Right Children are larger

Min-Heap Property (recursive invariants)
● All Children are larger

Completeness Property
● Tree has no “gaps” (left-packed)

1

3

9 8

6

4

75

5

3

1

5 8

6

4 97

2



Does it Heap?
3

7

5 8

6

4 97

2

4

5

9

6

87

4

5

7

6

89

5

4

0

8

1

6



Does it Heap?

No - fails both invariants No, fails min-heap invariant.

Yes! Yes!

3

7

5 8

6

4 97

2

4

5

9

6

87

4

5

7

6

89

5

4

0

8

1

6



● peek - where’s the element with the smallest 
priority?

Heap Properties

4

5

9

6

87



Heap Properties

4

5

9

6

87

● peek - where’s the element with the smallest 
priority?

Top of the heap!



Heap Properties

4

5

9

6

87

● peek - where’s the element with the smallest 
priority?

Top of the heap!

● Heap height with N items?



Heap Properties
● peek - where’s the element with the smallest 

priority?

Top of the heap!

● Heap height with N items?

Count total # of elements in full heap with K layers 
- # of elements in each layer doubles

N ≈ 20+21+...+2K-1 = 2K-1.
lg N ≈ lg 2K-1 ≈ lg 2K = K

4

5

9

6

87



Theory-Implementation:
removeMin



Find min

4

5

9

6

87

removeMin



Find min

9

5

4

6

87

4

5

9

6

87

Swap with last child

removeMin



Find min Delete and save previous min

9

5

4

6

87

4

5 6

87

Swap with last child

removeMin

5

4

6

87

9

var =9



Find min Delete and save previous min

“Bubble Down” to fix heap invariant

9

5 6

87

5

7 6

8

???

9

5

4

6

87

4

5

9

6

87

Swap with last child

removeMin

9

5

4

6

87

9

var =



Find min Delete and save previous min

“Bubble Down” to fix heap invariant

9

5 6

87

5

7 6

8

???

9

5

4

6

87

4

5

9

6

87

Swap with last child

removeMin

9

5

4

6

87

9

var =

Return min

4return



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

9

5 6

87



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

5

9 6

87

9

5 6

87



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

5

7 6

89

5

9 6

87

9

5 6

87



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

7

3 4

65 5 7

89 8



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

7

3 4

65 5 7

89 8



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

3

7 4

65 5 7

89 8

7

3 4

65 5 7

89 8



“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

3

5 4

67 5 7

89 8

Runtime?

3

7 4

65 5 7

89 8

7

3 4

65 5 7

89 8



“Bubble Down”

Runtime? Worst case, swap through every layer. Heap height is ~lg n, so runtime is O(lg n). 

bubbleDown(node) {
while (node.priority is greater than either child) {

Swap data with smaller child
}

}

3

5 6

67 5 7

89 8

3

7 6

65 5 7

89 8

7

3 6

65 5 7

89 8



Theory-Implementation:
insert



insert
insert(1).
Where should the new item go first?

4

5

9

6

87



insert
insert(1).
Where should the new item go first?

4

5

9

6

87



insert

4

5

9

6

87 1

Fill last “hole” with 1.insert(1).
Where should the new item go first?

4

5

9

6

87



insert

4

5

9

6

87 1

“Bubble Up” to fix heap invariant

???

1

5

9

4

87 6

4

5

9

6

87 1

Fill last “hole” with 1.insert(1).
Where should the new item go first?

4

5

9

6

87



“Bubble Up”

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

4

5

9

6

87 1



“Bubble Up”

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

4

5

9

1

87 6

4

5

9

6

87 1



“Bubble Up”

1

5

9

4

87 6

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

4

5

9

1

87 6

4

5

9

6

87 1



“Bubble Up”

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

3

5 6

67 9 7

89 8 4



“Bubble Up”

3

5 6

47 9 7

89 8 6

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

3

5 6

67 9 7

89 8 4



“Bubble Up”

Runtime?

3

4 6

57 9 7

89 8 6

3

5 6

47 9 7

89 8 6

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

3

5 6

67 9 7

89 8 4



“Bubble Up”

Runtime? Worst case, swap through every layer. Heap height is ~lg n, so runtime is O(lg n). 

bubbleUp(node) {
while (node.priority is smaller than parent) {

Swap data with parent
}

}

3

5 6

67 9 7

89 8 4

3

4 6

57 9 7

89 8 6

3

5 6

47 9 7

89 8 6



Implementation: array



Heap: Implementation

∅ A B C D E F G H I J K L ∅ ∅ ∅

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

heap:

Fill an array in level-order of the tree (starting from index 1):

A

B C

ED F G

IH J K L

2

4

3

65 7

8 10 11

1

129



Heap: Implementation

Node at index i - getting its…
● Parent?
● Left child?
● Right child?

∅ A B C D E F G H I J K L ∅ ∅ ∅

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

heap:

Fill an array in level-order of the tree (starting from index 1):

A

B C

ED F G

IH J K L

2

4

3

65 7

8 10 11

1

129



Heap: Implementation

Node at index i - getting its…
● Parent? i / 2, rounding down
● Left child? 2i
● Right child? 2i + 1

∅ A B C D E F G H I J K L ∅ ∅ ∅

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

heap:

Fill an array in level-order of the tree (starting from index 1):

A

B C

ED F G

IH J K L

2

4

3

65 7

8 10 11

1

129


