Lab 9: Priority Queues and Heaps

ITS A CHRISTMAS TREE. WITH A
HEAP OF PRESENTS (JNDERNEATH!

... WERE NOT INVITING
YOU HOME NEXT YEAR.

Announcements

e Lab 9 -due Friday 03/18

e HW 6 - due Tuesday 03/29

e Project 2: Ataxx
o Checkpoint - due Friday 03/18
o Project - due Friday 04/01

T-REX LET'S SAY YOU HAVE AHA MY FRIEND BUT WHEN PRECISELY DID IT

A GIANT HEAP OF SAND AND SWITCH FROM HEAP TO NON-HEAP

I REMOVE ONE GRAIN OF I dunno! At some fuzzy
/ point it would switch for
i most ohservers from "heap"
ooh, HEAP ANYMORE |, 1 \ to, say, "small pile", and

let's!! ClearTy!
% :

IT AT A TIME

there we can draw the line.
Language isn't that
precise.

LISTEN THIS IS A CLASSIC
PARADOX THAT
EUBULIDES OF
MILETUS CAME -
UP WITH OVER
2000 YEARS AGO

OH snap, phi1os?qhers! Did

YOU NEED°TO HAVE The point at which a shrinking hea

YOUR MIND BLOWN NOW |of sand becomes a non-heap. C1ear$y T-Rex just totally school you

OKAY I'm supposed to strugg1e with an with his statistically-based
sounds kinda arbitrary threshold, because piles descriptivist approach to

dumb to me! on either side of it Took much the \ a semantics?
. W IT APPEARS

20039 Ryan North

what V53 _ same. But

it's just
1anEuage!
Look at

word "heap",
decide
using
that
average,
end of

statistical =N
usage of the

THAT HE
TOTALLY
DID!!

also appears
he's speaking
in the third
erson because
e's so
impressed with
his awesome
self!

W, QWantz. com

Theory - Priority Queues

Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was
enqueued longest ago.

Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was
enqueued longest ago.

PriorityQueue: A Queue that prioritizes certain items (e.g hospital ER)
Examples:

Queue Interface

Based on time (recency)

enqueue(val) Adds val to the queue

peek() / poll() Returns the item in the queue that was
enqueued longest ago.

PriorityQueue: A Queue that prioritizes certain items (e.g hospital ER)
Examples:

e OS Process Scheduling

e Sorting

e Greedy algorithms (e.g. “shortest path”)

PriorityQueue ADT

insert(val, priority) Adds va' to the queue with priority value
priority

peek() / poll() Returns the item in the queue with the
highest priority.

e Min priority queue: highest priority == lowest priority value
o There’s also a “max priority queue” / max heap, where highest priority value is highest priority
e No specification on how to deal with ties

PriorityQueue ADT

insert(val, priority) Adds va' to the queue with priority value
priority

peek() / poll() Returns the item in the queue with the
highest priority.

e Highest Priority == Lowest Priority Value

peek
poll
insert(E, 1)
poll
insert(F, 5)
poll

peek poll

PriorityQueue ADT

insert(val, priority) Adds va' to the queue with priority value
priority

peek() / poll() Returns the item in the queue with the
highest priority.

e Highest Priority == Lowest Priority Value

peek >
poll >
insert(E, 1)
poll >
insert(F, 5)
poll >

peek poll

Theory - Heaps

Review: BST Properties

BST Property (recursive invariant)
e Left Children are smaller
e Right Children are larger

In Contrast: Heap Properties

BST Property (recursive invariant)
e Left Children are smaller
e Right Children are larger

Min-Heap Property (recursive invariants)
e All Children are larger
Completeness Property
e Tree has no “gaps” (left-packed)

Does it Heap?

Does it Heap?
ﬁe © 0
oNORO SEE
oNclo OO0

No - fails both invariants No, fails min-heap invariant.

Heap Properties

e peek - where’s the element with the smallest

° priority?

Heap Properties

e peek - where’s the element with the smallest

° priority?
e e Top of the heap!

Heap Properties

e peek - where’s the element with the smallest

° priority?
e e Top of the heap!

e Heap height with N items?

Heap Properties

peek - where's the element with the smallest
priority?

Top of the heap!
Heap height with N items?

Count total # of elements in full heap with K layers
- # of elements in each layer doubles

N = 20+21+ +2K1 = 2K 9,
IgN =Ig 2K-1 =g 2€ = K

Theory-Implementation:
removeMin

removeMin

Find min

§

removeMin

Find min Swap with last child

removeMin

Find min Swap with last child Delete and save previous min

removeMin

Find min Swap with last child Delete and save previous min

“Bubble Down” to fix heap invariant

Lo e T

removeMin

Find min Swap with last child Delete and save previous min
| 3
ORO DO w-Q
“Bubble Down” to fix heap invariant Return min

e return°
(‘ © o ©

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

é%)%

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

Py S S

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

MO — AT

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

e

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

A

Runtime?

“Bubble Down”

bubbleDown(node) {
while (node.priority is greater than either child) {
Swap data with smaller child

}

A

Runtime? Worst case, swap through every layer. Heap height is ~Ig n, so runtime is O(Ig n).

Theory-Implementation:
insert

insert

insert(1).
Where should the new item go first?

insert

insert(1).
Where should the new item go first?

insert

insert(1).
Where should the new item go first?

Fill last “hole” with 1.

insert

insert(1).
Where should the new item go first?

“‘Bubble Up” to fix heap invariant

G e

Fill last “hole” with 1.

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

e
09

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

@ -
B A IS

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

o > o
B A RSB

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

}

\

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

Runtime?

“Bubble Up”

bubbleUp (node) {
while (node.priority 1is smaller than parent) {
Swap data with parent

Runtime? Worst case, swap through every layer. Heap height is ~Ig n, so runtime is O(Ig n).

Implementation: array

Heap: Implementation

Fill an array in level-order of the tree (starting from index 1):

heap:

%]

A

B

C

D

E

F

G

H

I

J

K

L

(%)

%)

%)

h[oe]

h[1]

h[2]

h[3]

h[4]

h[5]

h[é]

h7]

h[8]

h[9]

h[10]

h[11]

h[12]

h[13]

h[14]

h[15]

Heap: Implementation

Fill an array in level-order of the tree (starting from index 1):

heap: Z A B C D E F G H I J K L @ % @

h[oe] h[1] h[2] h[3] h[4] h[5] h[é] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

Node at index 1 - getting its...
e Parent?
e Left child?
e Right child?

Heap: Implementation

Fill an array in level-order of the tree (starting from index 1):

heap: Z A B C D E F G H I J K L @ % @

h[oe] h[1] h[2] h[3] h[4] h[5] h[é] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14] h[15]

Node at index 1 - getting its...
e Parent? i / 2, rounding down
e Left child? 21
e Rightchild? 24 + 1

