IntDList

Lab 3



Review: Linked Lists

A linked list is a data structure that consists of individual links that each have two fields: head which holds a
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8);

<IntList obj> <IntList obj> <IntList obj>

IntList L —>

int head | 4 int head | 1 int head | 8

IntList ,/ IntList ,/ IntList \

tail tail tail




Review: Linked Lists

A linked list is a data structure that consists of individual links that each have two fields: head which holds a
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8);
<IntList obj> <IntList obj> <IntList obj>
IntList L —>
int head | 4 int head | 1 int head | 8
IntList __,/ IntList __,/ IntList \
tail tail tail
IntList L —> 4 T—> 1 T— 8 shorthand version of drawing an IntList
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Doubly Linked Lists

A doubly linked list is a data structure that consists of individual links that each have three fields: value which
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link.
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later
DNode D = DNode.list(4, 1, 8);

<DNode obj> <DNode obj> <DNode obj>
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Doubly Linked Lists

A doubly linked list is a data structure that consists of individual links that each have three fields: value which
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link.
Each link is an object, e.g. an DNode object.
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Doubly Linked Lists

A doubly linked list is a data structure that consists of individual links that each have three fields: value which
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link.
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later
DNode D = DNode.list(4, 1, 8);
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We will be using this shorthand version of DNode for
the rest of the slides.



Doubly Linked Lists: IntDList

The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.

IntDList DL = new IntDList(4, 1, 8);

<IntDList obj>

DNode

IntDList DL L 5 Front — <DNode> <DNode> <DNode>
DNode \ 4l Je || T+ |8 \
back




Doubly Linked Lists: IntDList

The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.

IntDList DL = new IntDList(4, 1, 8);

<IntDList> We will be using this shorthand

IntDList DL -1 . version of IntDList for the rest
of the slides.
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IntDList: insertFront




IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); // how do we do this?
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Insert a value to the beginning of your IntDList.
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IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);
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IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7);
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IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7);
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IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);
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IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);
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Edge case: what if this is the first element in the IntDList?
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront(); // how do we do this?



IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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it will be automatically garbage collected.



IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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Edge case: what if we are removing the only element of the IntDList?



