
IntDList
Lab 3 



Review: Linked Lists
A linked list is a data structure that consists of individual links that each have two fields: head which holds a 
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8); 

IntList L
4int head

IntList 
tail

1int head

IntList 
tail

8int head

IntList 
tail

<IntList obj> <IntList obj> <IntList obj>



Review: Linked Lists
A linked list is a data structure that consists of individual links that each have two fields: head which holds a 
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8); 

IntList L

<IntList obj>

4int head

IntList 
tail

<IntList obj>

1int head

IntList 
tail

<IntList obj>

8int head

IntList 
tail

4 1 8
h t h t h t

IntList L shorthand version of drawing an IntList



Doubly Linked Lists



Doubly Linked Lists
A doubly linked list is a data structure that consists of individual links that each have three fields: value which 
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link. 
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later 
DNode D = DNode.list(4, 1, 8); 

DNode D

<DNode obj>

4int 
value

DNode 
next

DNode 
prev

<DNode obj>

1int 
value

DNode 
next

DNode 
prev

<DNode obj>

8int 
value

DNode 
next

DNode 
prev



Doubly Linked Lists
A doubly linked list is a data structure that consists of individual links that each have three fields: value which 
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link. 
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later 
DNode D = DNode.list(4, 1, 8); 

DNode D

<DNode obj>

4int 
value

DNode 
next

DNode 
prev

<DNode obj>

1int 
value

DNode 
next

DNode 
prev

<DNode obj>

8int 
value

DNode 
next

DNode 
prev

4 1
p n

DNode D shorthand version
v p nv

8
p nv



Doubly Linked Lists
A doubly linked list is a data structure that consists of individual links that each have three fields: value which 
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link. 
Each link is an object, e.g. an DNode object.

DNode D

We will be using this shorthand version of DNode for 
the rest of the slides.

<DNode> <DNode> <DNode>

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later 
DNode D = DNode.list(4, 1, 8); 

4 1
p nv p nv

8
p nv



Doubly Linked Lists: IntDList
The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two 
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8); 

<IntDList obj>

DNode 
front

DNode 
back

4 1 8



Doubly Linked Lists: IntDList
The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two 
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8); 

f b

<IntDList> We will be using this shorthand 
version of IntDList for the rest 
of the slides.

4 1 8



IntDList: insertFront



IntDList: insertFront
Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); // how do we do this?



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7);

f b

<IntDList>

4 1 8



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7);

f b

<IntDList>

4 1 8



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); 

f b

<IntDList>

4 1 8
p nv

<DNode>

7



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); 

f b

<IntDList>

4 1 8
p nv

<DNode>

7



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); 

f b

<IntDList>

4 1 8
p nv

<DNode>

7



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); 

f b

<IntDList>

4 1 8
p nv

<DNode>

7



IntDList: insertFront
Insert a value to the beginning of your IntDList.

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); 

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Edge case: what if this is the first element in the IntDList?



IntDList: deleteFront



IntDList: deleteFront
Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront(); // how do we do this?



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

7int frontToReturn



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

7int frontToReturn



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

7int frontToReturn



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

7x



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

7x

Don’t need to worry about this! It is no longer referenced so 
it will be automatically garbage collected.



IntDList: deleteFront

p n

IntDList DL

v p nv p nv

<DNode> <DNode> <DNode>

f b

<IntDList>

4 1 8
p nv

<DNode>

7

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

7x

Edge case: what if we are removing the only element of the IntDList?


