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Review: Linked Lists
A linked list is a data structure that consists of individual links that each have two fields: head which holds a 
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8); 
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Doubly Linked Lists
A doubly linked list is a data structure that consists of individual links that each have three fields: value which 
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link. 
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later 
DNode D = DNode.list(4, 1, 8); 
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Doubly Linked Lists
A doubly linked list is a data structure that consists of individual links that each have three fields: value which 
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link. 
Each link is an object, e.g. an DNode object.
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We will be using this shorthand version of DNode for 
the rest of the slides.
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// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later 
DNode D = DNode.list(4, 1, 8); 
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Doubly Linked Lists: IntDList
The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two 
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.
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Doubly Linked Lists: IntDList
The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two 
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.
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IntDList DL = new IntDList(4, 1, 8); 
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IntDList: insertFront
Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); // how do we do this?
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IntDList: insertFront
Insert a value to the beginning of your IntDList.
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Edge case: what if this is the first element in the IntDList?
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IntDList: deleteFront
Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront(); // how do we do this?
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Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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Don’t need to worry about this! It is no longer referenced so 
it will be automatically garbage collected.
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Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();
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Edge case: what if we are removing the only element of the IntDList?


