IntDList

Lab 3

Review: Linked Lists

A linked list is a data structure that consists of individual links that each have two fields: head which holds a
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8);

<IntList obj> <IntList obj> <IntList obj>

IntList L —>

int head | 4 int head | 1 int head | 8

IntList ,/ IntList ,/ IntList \

tail tail tail

Review: Linked Lists

A linked list is a data structure that consists of individual links that each have two fields: head which holds a
value and tail which stores a pointer to the next link. Each link is an object, e.g. an IntList object.

IntList L = IntList.list(4, 1, 8);
<IntList obj> <IntList obj> <IntList obj>
IntList L —>
int head | 4 int head | 1 int head | 8
IntList __,/ IntList __,/ IntList \
tail tail tail
IntList L —> 4 T—> 1 T— 8 shorthand version of drawing an IntList

Doubly Linked Lists

Doubly Linked Lists

A doubly linked list is a data structure that consists of individual links that each have three fields: value which
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link.
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later
DNode D = DNode.list(4, 1, 8);

<DNode obj> <DNode obj> <DNode obj>
DNode D —> int int int
4 1 8
value value value
DNode \ DNode [DNode [
prev " el prev &~ prev
DNode _,// DNode _,/ DNode \
next next next

Doubly Linked Lists

A doubly linked list is a data structure that consists of individual links that each have three fields: value which
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link.
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later

DNode D = DNode.list(4, 1, 8);

DNode D

DNode D

<DNode obj>

<DNode obj>

<DNode obj>

int
value

DNode
prev

DNode
next

8

N

int 4 int]
value value
DNode \ DNode [
prev " o prev V o
DNode [- DNode _,/
next next
————————a»\\\ 4l = | 1| ==

8 [\

shorthand version

Doubly Linked Lists

A doubly linked list is a data structure that consists of individual links that each have three fields: value which
holds a value, prev which stores a pointer to the previous link, and next which stores a pointer to the next link.
Each link is an object, e.g. an DNode object.

// THIS METHOD DOES NOT ACTUALLY EXIST - we will see more later
DNode D = DNode.list(4, 1, 8);

<DNode> <DNode> <DNode>

oNode D | F———> NJ 4| =L [1| 4= [8|\

We will be using this shorthand version of DNode for
the rest of the slides.

Doubly Linked Lists: IntDList

The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.

IntDList DL = new IntDList(4, 1, 8);

<IntDList obj>

DNode

IntDList DL L 5 Front — <DNode> <DNode> <DNode>
DNode \ 4l Je || T+ |8 \
back

Doubly Linked Lists: IntDList

The IntDList class is another class that wraps around a doubly linked list of DNodes. An IntDList object has two
fields: front which stores a pointer to the front DNode and back which stores a pointer to the back DNode.

IntDList DL = new IntDList(4, 1, 8);

<IntDList> We will be using this shorthand

IntDList DL -1 . version of IntDList for the rest
of the slides.

<DNode> <DNode> <DNode>

NEE=—HEHE=——SEIN

IntDList: insertFront

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7); // how do we do this?

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);

IntDList DL

<IntDList>

.

<DNode>

N

4

—_—

<DNode>

<DNode>

—1

1

8

N

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);

IntDList DL

<IntDList>

.

<DNode>

N

4

—_—

<DNode>

<DNode>

—1

1

8

N

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);

<IntDList>

.

IntDList DL

<DNode>

<DNode>

ANEAAN

N

4

—_—

<DNode>

<DNode>

—1

1

8

N

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7);

IntDList DL

<DNode>

<IntDList>

.

<DNode>

N

7

N

4

—_—

<DNode>

<DNode>

—1

1

8

N

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);
DL.insertFront(7);

IntDList DL

<DNode>

<IntDList>

.

<DNode>

N

7

4

—_—

<DNode>

<DNode>

—1

1

8

N

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);

IntDList DL

<IntDList>

4’ —

<DNode> <DNode> <DNode>
7| Je—— | 4| T=—=— |

N

<DNode>

8

N

IntDList: insertFront

Insert a value to the beginning of your IntDList.

IntDList DL = new IntDList(4, 1, 8);

DL.insertFront(7);

IntDList DL

<IntDList>
4’ —
<DNode> <DNode> <DNode> <DNode>
7| 72— |4 T=—=— || === | 8 ‘\\\

N

Edge case: what if this is the first element in the IntDList?

IntDList: deleteFront

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront(); // how do we do this?

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>

IntDList DL —

<DNode> <DNode> <DNode> <DNode>

\7 T— |4 | T=—==-— | ' | T&—=1— 8\

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>

IntDList DL —

<DNode> <DNode> <DNode> <DNode>

\7 T— |4 | T=—==-— | ' | T&—=1— 8\

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>

IntDList DL [int frontToReturn

<DNode> <DNode> <DNode> <DNode>

\7 T— |4 | T—- | 1| T T—=1 8\

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>

IntDList DL [int frontToReturn

<DNode> <DNode> <DNode> <DNode>

\7 __’\4 T || T+ 8\

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>
IntDList DL ?/ — int frontToReturn
<DNode> <DNode> <DNode> <DNode>

\\\‘ 7 -—-—-—':\\\ 4 o= | 1| == | 8 ‘\\\

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>
IntDList DL AP-I —
X 7 {///
<DNode> <DNode> <DNode> <DNode>

\\\‘ 7 -—-—-—':\\\ 4 o= | 1| == | 8 ‘\\\

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>
IntDList DL > |
x |7 {///
<DNode> | <DNode> <DNode> <DNode>

I
|
NN el [[el [5]N
|
|

it will be automatically garbage collected.

IntDList: deleteFront

Delete a value to the beginning of your IntDList.

IntDList DL = new IntDList(7, 4, 1, 8);
int x = DL.deleteFront();

<IntDList>
IntDList DL AP-I —
X 7 {///
<DNode> <DNode> <DNode> <DNode>

\7 ——>\4 T—= | 1| T 8\

Edge case: what if we are removing the only element of the IntDList?

