
CS 61B // Spring 2022

Algorithmic Analysis
Discussion 07

CS 61B // Spring 2022

Announcements ● HW 4 due Tuesday 03/01
● Enigma due Friday 03/04

CS 61B // Spring 2022

Review

CS 61B // Spring 2022

Cost
Time Complexity (Time Cost) - How long does it take to run this program if we feed it certain input?

Space Complexity (Spatial Cost) - How much space does this program take to run on our computer?

CS 61B // Spring 2022

Asymptotics
Asymptotics allow us to evaluate the performance of our programs using math. We ignore all constants and only
care about the value with reference to the input (usually defined as N)

Big O - The upper bound in terms of the input (essentially, assume every conditional statement evaluates to the
worst case).
Big Ω - The lower bound in terms of the input (essentially, assume every conditional statement evaluates to the
best case).
Big Θ - The tightest bound, which only exists when the tightest upper bound and the tightest lower bound
converge to the same value.

Fun sums:
1 + 2 + 3 + . . . + N = Θ(N2)
1 + 2 + 4 + . . . + N = Θ(N)

CS 61B // Spring 2022

CS 61B Algorithmic Analysis
Spring 2022 Exam Prep Discussion 7: February 28, 2022

1 Asymptotics Introduction
Give the runtime of the following functions in Θ notation. Your answer should be

as simple as possible with no unnecessary leading constants or lower order terms.

private void f1(int N) {

for (int i = 1; i < N; i++) {

for (int j = 1; j < i; j++) {

System.out.println("hello tony");

}

}

}

Θ(___)

private void f2(int N) {

for (int i = 1; i < N; i *= 2) {

for (int j = 1; j < i; j++) {

System.out.println("hello hannah");

}

}

}

Θ(___)

2 Algorithmic Analysis

2 Finish the Runtimes
Below we see the standard nested for loop, but with missing pieces!

1 for (int i = 1; i < ______; i = ______) {

2 for (int j = 1; j < ______; j = ______) {

3 System.out.println("We will miss you next semester Akshit :(");

4 }

5 }

For each part below, some of the blanks will be filled in, and a desired runtime will

be given. Fill in the remaining blanks to achieve the desired runtime! There may

be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: Θ(N2)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < i; j = ______) {

3 System.out.println("This is one is low key hard");

4 }

5 }

(b) Desired runtime: Θ(log(N))

1 for (int i = 1; i < N; i = i * 2) {

2 for (int j = 1; j < ______; j = j * 2) {

3 System.out.println("This is one is mid key hard");

4 }

5 }

(c) Desired runtime: Θ(2N)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < ______; j = j + 1) {

3 System.out.println("This is one is high key hard");

4 }

5 }

(d) Desired runtime: Θ(N3)

1 for (int i = 1; i < ______; i = i * 2) {

2 for (int j = 1; j < N * N; j = ______) {

3 System.out.println("yikes");

4 }

5 }

Algorithmic Analysis 3

3 Asymptotic Expressions
(a) Which of the following expressions are true? Check all that apply. Equations

between asymptotic expressions, such as O(f) = O(g) simply mean that all

functions that are O(f) are also O(g) and vice-versa. An expression such as

O(f) ⊆ O(g) means that all functions that are O(f) are also O(g).

□ Θ(1000 ∗N3 +N ∗ log(N)) = Θ(N3)).

□ For all k ≥ 0, O(Nk) ⊆ O(Nk+1)).

□ For all k ≥ 0, Ω(Nk) ⊆ Ω(Nk+1)).

□ For positive-valued functions f and g, if f = Ω(g) and g = O(h), f =

Ω(h).

□ For positive-valued functions f and g, if f = Ω(g) and h = O(g), f =

Ω(h).

(b) For positive-valued functions f0 . . . fk, where we define fi(n) = 1+ fn%i(n) for

i ≥ 1 and f0(n) = 1, which of the following are true? Check all that apply.

Assume that n > k.

□ The evaluation of fk(n) may run forever.

□ fk(n) = Ω(log(k)), with respect to k.

□ fk(n) = O(k), with respect to k.

□ fk(n) = Θ(1), with respect to n.

□ If n = k!− 1, fk(n) = Θ(k), with respect to k.

4 Algorithmic Analysis

4 Prime Factors
Determine the best and worst case runtime of prime_factors in Θ(.) notation as a

function of N.

1 int prime_factors(int N) {

2 int factor = 2;

3 int count = 0;

4 while (factor * factor <= N) {

5 while (N % factor == 0) {

6 System.out.println(factor);

7 count += 1;

8 N = N / factor;

9 }

10 factor += 1;

11 }

12 return count;

13 }

Best Case: Θ(), Worst Case: Θ()

	Discussion 7 Slides (Click-Thru)
	examprep7
	Asymptotics Introduction
	Finish the Runtimes
	Asymptotic Expressions
	Prime Factors

