
CS 61B // Spring 2022

Test 1 Review
Discussion 05



CS 61B // Spring 2022

Announcements ● Test 1 on Wednesday, 02/16
● Enigma released!



CS 61B // Spring 2022

Review



CS 61B // Spring 2022

Fun with Methods
Method Overloading is done when there are multiple methods with the same name and return type, but different 
parameters.

public void barkAt(Dog d) { System.out.print(“Woof, it’s another dog!”); }
public void barkAt(Animal a) { System.out.print(“Woof, what is this?”); }

Method Overriding is done when a subclass has a method with the exact same function signature as a method in 
its superclass.

In Dog class:
public void speak() { System.out.print(“Woof, I’m a dog!”); }
In Corgi Class:
public void speak() { System.out.print(“Woof, I’m a corgi!”); }



CS 61B // Spring 2022

Casting
Casting allows our compiler to overlook cases where we are calling a method that belongs to a subclass on a 
variable that is statically typed to be the superclass. 

Animal a = new Dog();
Dog d = a;
Dog d = (Dog) a;



CS 61B // Spring 2022

Dynamic Method Selection
Your computer. . .

@ Compile Time:
1. Check for valid variable assignments
2. Check for valid method calls (only considering static type)

@ Run Time:
1. Check for overridden methods 
2. Ensure casted objects can be assigned to their variables (only considering dynamic type)

Fields are always chosen based on static type!



CS 61B Inheritance and Test Review
Spring 2022 Exam Prep Discussion 5: February 14, 2022

Note this worksheet is very long and is not expected to be finished in an hour.

1 Athletes
Suppose we have the Person, Athlete, and SoccerPlayer classes defined below.

1 class Person {

2 void speakTo(Person other) { System.out.println("kudos"); }

3 void watch(SoccerPlayer other) { System.out.println("wow"); }

4 }

5

6 class Athlete extends Person {

7 void speakTo(Athlete other) { System.out.println("take notes"); }

8 void watch(Athlete other) { System.out.println("game on"); }

9 }

10

11 class SoccerPlayer extends Athlete {

12 void speakTo(Athlete other) { System.out.println("respect"); }

13 void speakTo(Person other) { System.out.println("hmph"); }

14 }

(a) For each line below, write what, if anything, is printed after its execution.

Write CE if there is a compiler error and RE if there is a runtime error. If a

line errors, continue executing the rest of the lines.

1 Person itai = new Person();

2

3 SoccerPlayer shivani = new Person();

4

5 Athlete sohum = new SoccerPlayer();

6

7 Person jack = new Athlete();

8

9 Athlete anjali = new Athlete();

10

11 SoccerPlayer chirasree = new SoccerPlayer();

12

13 itai.watch(chirasree);

14

15 jack.watch(sohum);

16

17 itai.speakTo(sohum);

18



2 Inheritance and Test Review

19 jack.speakTo(anjali);

20

21 anjali.speakTo(chirasree);

22

23 sohum.speakTo(itai);

24

25 chirasree.speakTo((SoccerPlayer) sohum);

26

27 sohum.watch(itai);

28

29 sohum.watch((Athlete) itai);

30

31 ((Athlete) jack).speakTo(anjali);

32

33 ((SoccerPlayer) jack).speakTo(chirasree);

34

35 ((Person) chirasree).speakTo(itai);

(b) You may have noticed that jack.watch(sohum) produces a compile error. In-

terestingly, we can resolve this error by adding casting! List two fixes that

would resolve this error. The first fix should print wow. The second fix should

print game on. Each fix may cast either jack or sohum.

1.

2.

(c) Now let’s try resolving as many of the remaining errors from above by adding

or removing casting! For each error that can be resolved with casting, write

the modified function call below. Note that you cannot resolve a compile error

by creating a runtime error! Also note that not all, or any, of the errors may

be resolved.



Inheritance and Test Review 3

2 Hidden Fruits
Suppose we have the Fruit and Persimmon and classes defined below.

1 class Fruit {

2 String flavor = "generic";

3 static char start = 'f';

4

5 static int eat(Fruit fruit) {

6 return 1;

7 }

8

9 char hats() {

10 return this.start;

11 }

12 }

13

14 class Persimmon extends Fruit {

15 String flavor = "superb";

16 static char start = 'p';

17

18 static int eat(Fruit fruit) {

19 return 2;

20 }

21

22 int eat(Persimmon persimmon) {

23 return 3;

24 }

25 }

For each line below, write what, if anything, is printed after its execution. Write

CE if there is a compiler error and RE if there is a runtime error. If a line errors,

continue executing the rest of the lines.

1 Fruit shreyas = new Fruit();

2 Fruit aram = new Persimmon();

3 Persimmon eric = new Persimmon();

4

5 System.out.println(eric.flavor);

6 System.out.println(aram.flavor);

7

8 System.out.println(eric.eat(shreyas));

9 System.out.println(eric.eat(eric));

10 System.out.println(aram.eat(eric));

11

12 System.out.println(aram.hats());

13 System.out.println(eric.hats());



4 Inheritance and Test Review

3 Containers
a) (1 Points). Suppose that we have the Container abstract class below, with the

abstract method pour and the method drain. Implement the method drain so that

all the liquid is drained from the container, i.e. amountFilled is set to 0. Return

true if any liquid was drained, and false otherwise. In other words, return true if

and only if there is liquid in the container prior to the function being called. You

may add a maximum of 5 lines of code. Note that the staff solution uses 3. You

may only add code to the drain method. (Summer 2021 MT1)

1 public abstract class Container {

2 /* Keeps track of the total amount of liquid in the container */

3 public int amountFilled;

4

5 public boolean drain() {

6

7

8

9

10

11 } // You may use at most 5 lines of code, i.e. this bracket should be on line 11 or earlier.

12

13 abstract int pour(int amount);

14 }

b) (1.5 Points). Finish implementing the WaterBottle class so that it is a

Container. You should only add code to the blanks, i.e. fill in the pour method

and the class signature.

As stated in the Container class, the pour method should pour amount into the

container and return the amount of the excess liquid, or 0 if there is no excess. For

instance, suppose we have a WaterBottle w with capacity 10 and amountFilled 5.

Then, if we execute w.pour(7), amountFilled should be set to 10 and 2 should be

returned. Your solution must fit within the blanks provided. You may not need all

the lines.

1 class WaterBottle ______________ Container {

2 private static final int DEFAULT_CAPACITY = 16;

3

4 /* The capacity of the container, i.e. the maximum amount of liquid the water bottle can hold */

5 private int capacity;

6

7 WaterBottle() {

8 this(DEFAULT_CAPACITY);

9 }

10 WaterBottle(int capacity) {

11 this.capacity = capacity;

12 this.amountFilled = 0;

13 }



Inheritance and Test Review 5

14

15 @Override

16 public int pour(int amount) {

17 _____________________________________;

18 if (_________________________________) {

19 _________________________________;

20 _________________________________;

21 _________________________________;

22 }

23 _____________________________________;

24 }

25 }

c) (4 Points). Finally, suppose we have the ContainerList class, with the drainFirst

method as implemented below. Unfortunately, the drainFirst method sometimes

errors!

In order to fix it, you may add code to the ContainerList constructor and the

UnknownContainer class! You may only use 5 lines of code in the ContainerList

constructor and add 4 lines of code to the UnknownContainer class! If you decide

to keep or modify the given line in the ContainerList constructor, it counts as one

of the 5 lines.

Note that, after making your changes, the drainFirst should never error and re-

tain the functionality in the docstring. Youmay not modify the drainFirst

method! You may use classes from the previous part assuming they are imple-

mented correctly.

Hint: Make sure that, with your fix, the drainFirst method won’t error, even if

the drainFirst method is called many times.

1 class UnknownContainer ___________________ {

2 // TODO

3

4

5

6

7

8 } // You may add at most 4 lines of code to the class above

9 // i.e. the closing bracket should be on line 6 or earlier

10

11 class ContainerList {

12 private Container[] containers;

13

14 ContainerList(Container[] conts) {

15 this.containers = conts; // you may delete, modify, or keep this line

16 // YOUR CODE HERE

17

18



6 Inheritance and Test Review

19

20

21

22 } // You may use at most 5 lines of code in the Constructor

23 // i.e. the closing bracket should be on line 18 or earlier

24

25 /* Drains the water from the first nonempty container */

26 void drainFirst() {

27 int index = 0;

28 while (!containers[index].drain()) {

29 index += 1;

30 }

31 }

32 }



Inheritance and Test Review 7

The following two problems are very challenging, and we only recommend attempting

after finishing the rest of the worksheet.

4 Challenge: Frauds List
(6 Points). Suppose we have the IntList and FraudsList classes below (Summer

2021, Final)

1 public class IntList {

2 public int first;

3 public IntList rest;

4

5 public IntList(int f, IntList r) {

6 first = f;

7 rest = r;

8 }

9

10 public int size() {

11 IntList p = this;

12 int totalSize = 0;

13 while (p != null) {

14 totalSize += 1;

15 p = p.rest;

16 }

17 return totalSize;

18 }

19 }

20

21 class FraudList extends IntList {

22 public FraudList(int f, IntList r) {

23 super(f, r);

24 }

25 public int size() {

26 return -super.size();

27 }

28 }

Implement the method findFrauds which accepts an array of IntLists in which

some of the elements are, or may contain, FraudLists! That is, the dynamic type of

certain IntList instances is FraudList. As shown above, a FraudList is an IntList

whose size method returns the negative of the correct size. You must report these

FraudLists by non-destructively returning a new FraudList of all the FraudList

instances linked together in the order they appear in arr.

You may not modify the given array arr or the IntLists inside of FraudList. You

may not use instanceOf, getClass(), isInstance() or any method not explicitly

written in the classes above or imported. An instance of the problem is shown

below:



8 Inheritance and Test Review

1 IntList first = new IntList(1000, new IntList(1002, new FraudList(1, new FraudList(2, null))));

2 IntList second = new FraudList(3, null);

3 IntList third = new IntList(3000, null);

4 IntList fourth = new FraudList(4, new IntList(231, new FraudList(5, null)));

5 IntList[] arr = new IntList[]{first, second, third, fourth};

6 FraudList frauds = findFrauds(arr);

After executing the lines above, frauds should be equal to the FraudList with the

elements 1, 2, 3, 4, 5 and arr, as well as the contents within arr, should

be unchanged. Fill in the skeleton below. You may not delete, modify, or add to

any of the provided skeleton code.

1 import static java.lang.System.arraycopy;

2

3 public static FraudList findFrauds(IntList[] arr) {

4 IntList[] copy = new IntList[arr.length];

5 arraycopy(arr, 0, copy, 0, arr.length);

6 return helper(____________, ____________);

7 }

8

9 public static FraudList helper(IntList[] copy, int index) {

10 if (__________________________________) {

11 return null;

12 } else if (___________________________) {

13 return ____________________________;

14 }

15 __________________________________________;

16 __________________________________________;

17 if (_________________________________) {

18 return ____________________________;

19 } else {

20 return ____________________________;

21 }

22 }



Inheritance and Test Review 9

5 Challenge: A Puzzle
Consider the partially filled classes for A and B as defined below:

1 public class A {

2 public static void main(String[] args) {

3 ___ y = new ___();

4 ___ z = new ___();

5 }

6

7 int fish(A other) {

8 return 1;

9 }

10

11 int fish(B other) {

12 return 2;

13 }

14 }

15

16 class B extends A {

17 @Override

18 int fish(B other) {

19 return 3;

20 }

21 }

Note that the only missing pieces of the classes above are static/dynamic types!

Fill in the four blanks with the appropriate static/dynamic type — A or B — such

that the following are true:

1. y.fish(z) equals z.fish(z)

2. z.fish(y) equals y.fish(y)

3. z.fish(z) does not equal y.fish(y)


	Discussion 5 Slides (Whiteboard)
	examprep5
	Athletes
	Hidden Fruits
	Containers
	Challenge: Frauds List
	Challenge: A Puzzle


