
CS 61B Balanced Search and Graphs
Spring 2022 Exam Prep Discussion 13: April 18, 2022

1 LLRBs
a) (2 Points). Perform the following insertions on the Left Leaning Red Black

Tree (LLRB) given below. For each insertion, give the fix up operations needed.

Recall a fix up operation is one of the following:

• rotateLeft

• rotateRight

• colorFlip

• change the root node to black.

Note that insertions are dependent. If only two operations are necessary, pick

“None” for the third operation. If only one operation is necessary, pick “None” for

the second and third operation. If no operations are necessary, pick “None” for all

three operations.

If you put “None” for the “Operation applied”, leave the “Node to apply on”

blank. (Summer 2021 MT2)

i) (0.5 Points). Insert 17

Operation applied Node to apply on

1st operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

2nd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

3rd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

ii) (0.5 Points). Insert 15. Note that insertions are dependent, so insert 15 into

the state of the LLRB after the insertion of 17.

2 Balanced Search and Graphs

Operation applied Node to apply on

1st operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

2nd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

3rd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

iii) (0.75 Points). Insert 13. Note that insertions are dependent, so insert 13 into

the state of the LLRB after the insertion of 15.

Operation applied Node to apply on

1st operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

2nd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

3rd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

iv) (0.75 Points). Insert 19. Note that insertions are dependent, so insert 19 into

the state of the LLRB after the insertion of 13.

Operation applied Node to apply on

1st operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

2nd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

3rd operation
⃝ rotateLeft() ⃝ rotateRight() ⃝ colorFlip()

⃝ change root to black ⃝ None

Balanced Search and Graphs 3

b) (1.5 Points). The tree below is not a valid LLRB (hint: to see why this is

the case, draw the corresponding 2-3 tree) but it’s close! In this part, we will try

to transform it into a valid LLRB in two different ways. Note that each way acts

independently of the previous. If a way isn’t possible, put impossible. Recall

that LLRBs cannot have duplicates.

i) (0.75 Points). Way 1: Remove a single leaf node from the tree. Which leaf

node?

⃝ 2 ⃝ 4 ⃝ 8 ⃝ 10 ⃝ 12 ⃝ 14 ⃝ 16 ⃝ impossible

ii) (0.75 Points). Way 2: Flip the color of a single node. Which node?

⃝ 2 ⃝ 4 ⃝ 8 ⃝ 10 ⃝ 12 ⃝ 14 ⃝ 16 ⃝ impossible

4 Balanced Search and Graphs

2 DFS, BFS, Dijkstra’s, A*
For the following questions, use the graph below and assume that we break ties by

visiting lexicographically earlier nodes first.

(a) Give the depth first search preorder traversal starting from vertex A.

(b) Give the depth first search postorder traversal starting from vertex A.

(c) Give the breadth first search traversal starting from vertex A.

(d) Give the order in which Dijkstra’s Algorithm would visit each vertex, starting

from vertex A. Sketch the resulting shortest paths tree.

(e) Give the path A* search would return, starting from A and with G as a goal.

Let h(u, v) be the valued returned by the heuristic for nodes u and v.

u v h(u, v)

A G 9

B G 7

C G 4

D G 1

E G 10

F G 3

H G 5

3 Graph Conceptuals
Answer the following questions as either True or False and provide a brief expla-

nation:

1. If a graph with n vertices has n− 1 edges, it must be a tree.

2. The adjacency matrix representation is typically better than the adjacency

list representation when the graph is very connected.

3. Every edge is looked at exactly twice in every iteration of DFS on a con-

nected, undirected graph.

Balanced Search and Graphs 5

4. In BFS, let d(v) be the minimum number of edges between a vertex v and the

start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always

less than 2.

5. Given a fully connected, directed graph (a directed edge exists between every

pair of vertices), a topological sort can never exist.

6 Balanced Search and Graphs

4 Cycle Detection
Given an undirected graph, provide an algorithm that returns true if a cycle exists

in the graph, and false otherwise. Also, provide a Θ bound for the worst case

runtime of your algorithm. You may use either an adjacency list or an adjacency

matrix to represent your graph. (We are looking for an answer in plain English, not

code).

	LLRBs
	DFS, BFS, Dijkstra's, A*
	Graph Conceptuals
	Cycle Detection

