
CS 61B Sorting
Spring 2022 Exam Prep Discussion 12: April 11, 2022

1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms

on the same input list. The steps do not necessarily represent consecutive steps

in the algorithm (that is, many steps are missing), but they are in the correct

sequence. For each of them, select the algorithm it illustrates from among the

following choices: insertion sort, selection sort, mergesort, quicksort (first element

of sequence as pivot), and heapsort. When we split an odd length array in half in

mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) 1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

(c) 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001



2 Sorting

2 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ( ), Worst Case: Θ( )

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ( ), Worst Case: Θ( )

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ( ), Worst Case: Θ( )

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ( ), Worst Case: Θ( )

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ( ), Worst Case: Θ( )

• There is exactly 1 inversion

Best Case: Θ( ), Worst Case: Θ( )

• There are exactly (N2 −N)/2 inversions

Best Case: Θ( ), Worst Case: Θ( )



Sorting 3

3 MSD Radix Sort
Recursively implement the method msd below, which runs MSD radix sort on a List

of Strings and returns a sorted List of Strings. For simplicity, assume that each

string is of the same length. You may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort,

but any sort works! For the subroutine here, you may use the stableSort method,

which sorts the given list of strings in place, comparing two strings by the given

index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this

list between the specified fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the

specified collection to the end of this list, in the order that they are returned

by the specified collection’s iterator.

1 public static List<String> msd(List<String> items) {

2

3 return __________________________________________________________________;

4 }

5

6 private static List<String> msd(List<String> items, int index) {

7

8 if (_____________________________________________________________________) {

9 return items;

10 }

11 List<String> answer = new ArrayList<>();

12 int start = 0;

13

14 _________________________________________________________________________;

15 for (int end = 1; end <= items.size(); end += 1) {

16

17 if (_________________________________________________________________) {

18

19 _________________________________________________________________;

20

21 _________________________________________________________________;

22

23 _________________________________________________________________;

24 }

25 }

26 return answer;

27 }

28 /* You don't need to understand the implementation of this method to use it! */

29 private static void stableSort(List<String> items, int index) {

30 items.sort(Comparator.comparingInt(o -> o.charAt(index)));

31 }



4 Sorting

4 Bears and Beds
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help

them place their customers in the best possible homes to improve their experience.

They are currently in their alpha stage so their only customers (for now) are bears.

Now, a little known fact about bears is that they are very, very picky about their

bed sizes: they do not like their beds too big or too little - they like them just right.

Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.

The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-

sponding but also unknown sizes (not necessarily in the same order), return a list

of Bears and a list of Beds such that that the ith Bear in your returned list of Bears

is the same size as the ith Bed in your returned list of Beds. Bears can only be

compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:

Your algorithm should run in O(N logN) time on average. It may be helpful to

figure out the naive O(N2) solution first and then work from there.


	Identifying Sorts
	Sorted Runtimes
	MSD Radix Sort
	Bears and Beds

