
CS 61B // Spring 2022

Test 2 Review
Discussion 11 Slides

CS 61B // Spring 2022

Announcements
● Week 11 Survey due Tuesday 4/5

● Test 2 on Wednesday 4/6

● Tournament Submission due Sunday 4/10

● Lab 12 due Monday 4/11

CS 61B Test 2 Review
Spring 2022 Exam Prep Discussion 11: April 4, 2022

1 Round Down
Given some power of two powerOfTwo and a positive number num, round num down

to the nearest multiple of powerOfTwo. Assume powerOfTwo is greater than or equal

to 1. You may use only bit operations and one subtraction/addition operation.

Examples:

1 roundDown(8, 53) -> 48

2 roundDown(16, 90) -> 80

3 roundDown(1, 90) -> 90

1 public int roundDown(int powerOfTwo, int num) {

2

3 return ___;

4 }

2 Heaps
a) (2.5 Points). i) (1 Point). Suppose we have the min-heap below (represented

as an array) with distinct elements, where the values of A and B are unknown.

Note that A and B aren’t necessarily integers.

{1, A, 3, 5, 9, 11, 13, 10, B}

What can we say about the relationships between the following elements? Put >,

<, or ? if the answer is not known.

A ⃝ > ⃝ < ⃝ ? 1

A ⃝ > ⃝ < ⃝ ? 3

B ⃝ > ⃝ < ⃝ ? 10

A ⃝ > ⃝ < ⃝ ? B

ii) (1.5 Points). Note for both parts below, the values of A and B should not

violate the min-heap properties. Put -inf or inf if there isn’t a lower or upper

bound, respectively. If the bound for B depends on the value of A, or vice versa, you

may put the variable in the bound, e.g. A < B.

Considering one removeMin call, put tight bounds on A and B such that:

2 Test 2 Review

• We perform the maximum number of swaps.

< A <

< B <

• We perform the minimum number of swaps.

< A <

< B <

Test 2 Review 3

3 Hashing Asymptotics
Suppose we set the hashCode and equals methods of the ArrayList class as follows.

1 /* Returns true iff the lists have the same elements in the same ordering */

2 @Override

3 public boolean equals(Object o) {

4 if (o == null || o.getClass() != this.getClass() || o.size() != this.size()) {

5 return false;

6 }

7 ArrayList<T> other = (ArrayList<T>) o;

8 for (int i = 0; i < this.size(); i++) {

9 if (other.get(i) != this.get(i)) {

10 return false;

11 }

12 }

13 return true;

14 }

15

16 /* Returns the sum of the hashCodes in the list. Assume the sum is a cached instance variable. */

17 @Override

18 public int hashCode() {

19 return sum;

20 }

(a) Give the best and worst case runtime of hashContents in Θ(.) notation as a

function of N, where N is initial size of the list. Assume the length of set

's underlying array is N and the set does not resize. Assume the hashCode

of an Integer is itself. Admittedly, the ArrayList class does not have the

method removeLast, but assume it does for this problem, and is implemented

in amortized constant time. Finally, assume f accepts two ints, returns an

unknown int, and runs in constant time.

1 static void hashContents(HashSet<ArrayList<Integer>> set, ArrayList<Integer> list) {

2 if (list.size() <= 1) {

3 return;

4 }

5 int last = list.removeLast();

6 list.set(0, f(list.get(0), last));

7 set.add(list);

8 hashContents(set, list);

9 }

Best Case: Θ(), Worst Case: Θ()

4 Test 2 Review

(b) Continuing from the previous part, how can we define f to ensure the worst

case runtime? How can we define f to ensure the best case runtime? There

may be multiple possible answers.

1. Worst case:

1 int f(int first, int last) {

2 return __________________________;

3 }

2. Best case:

1 int f(int first, int last) {

2 return __________________________;

3 }

Test 2 Review 5

4 Boolean Confusion
Give the best and worst case runtime in Θ(.) notation as a function of N, where N is

arr.length. Your answer should be simple with no unnecessary leading constants

or summations.

1 void confusion(boolean[] arr) {

2 boolean first = arr[0];

3 int next;

4 for (next = 1; arr[next] == first; next++) {

5 if (next == arr.length - 1) {

6 return;

7 }

8 }

9 for (int i = 0; i < next; i++) {

10 arr[i] = !arr[i];

11 }

12 confusion(arr);

13 }

Best Case: Θ(), Worst Case: Θ()

5 Gamma
Give the best and worst case runtime in Θ(.) notation as a function of N. Your

answer should be simple with no unnecessary leading constants or summations.

Assume f(N) returns a random number between 1 and N/2, inclusive, and does so

in constant time.

1 static void gamma(int N) {

2 if (N <= 10) {

3 return;

4 }

5 for (int i = f(N); i < N; i += f(N)) {

6 gamma(i);

7 }

8 }

Best Case: Θ(), Worst Case: Θ()

	Discussion 11 Slides (Whiteboard)
	examprep11
	Round Down
	Heaps
	Hashing Asymptotics
	Boolean Confusion
	Gamma

