
CS 61B // Spring 2022

Heaps & Hashing
Discussion 10

CS 61B // Spring 2022

Announcements

● Homework 6 due Tuesday 03/29
● Week 9 Survey due Tuesday 03/29
● Project 2 due Friday April 04/01
● Test 2 Review Sessions

○ Wednesday 03/30
○ Friday 04/01

● Test 2 on Wednesday 04/06

CS 61B // Spring 2022

Review

CS 61B // Spring 2022

Heaps
Heaps are special trees that follow a few basic rules:

1. Heaps are complete - the only empty parts of a heap are in the bottom row, to the right
2. In a min-heap, each node must be smaller than all of its child nodes. The opposite is true for max-heaps.

0

5 1

7 8 2

CS 61B // Spring 2022

Insertion into Heaps

0

5 1

7 8 2 -1

0

5 -1

7 8 2 1

-1

5 0

7 8 2 1

CS 61B // Spring 2022

Deletion from Heaps

0

5 1

7 8 2 4

4

5 1

7 8 2

1

5 4

7 8 2

1

5 2

7 8 4

CS 61B // Spring 2022

Hashing
Hash functions are functions that represent an object using an integer. We use them to figure out which bucket
of our hashset the item should go in.

Once we have a hash for our object we use mod to find out which bucket it goes into.

In each bucket, we deal with having lots of items by chaining the items and using .equals to find what we are
looking for.

**It is important that your .equals() function matches the result of comparing hashcodes - if two items are equal,
they must also have the same hashcode**

0

1

2

3

4

2

11

9

6

40

CS 61B // Spring 2022

Open Addressing
An alternative to externally chained hashmaps. When there is a collision in bucket h(k), use another box using the
formula h(k) + f(m) for some function f.

Linear Probing → h(k) + m, h(k) + 2m, h(k) + 3m, ...
Quadratic Probing → h(k) + 1 * m, h(k) + 4 * m, h(k) + 9 * m, ...
Double Hashing → h(k) + h’(k), h(k) + 2h’(k), h(k) + 3h’(k), ...

CS 61B Heaps & Hashing
Spring 2022 Exam Prep Discussion 10: March 21, 2022

1 Fill in the Blanks
Fill in the following blanks related to min-heaps. Let N is the number of elements

in the min-heap. For the entirety of this question, assume the elements in the

min-heap are distinct.

1. removeMin has a best case runtime of and a worst case

runtime of .

2. insert has a best case runtime of and a worst case run-

time of .

3. A or traversal on a min-heap may

output the elements in sorted order. Assume there are at least 3 elements in

the min-heap.

4. The fourth smallest element in a min-heap with 1000 elements can appear in

places in the heap.

5. Given a min-heap with 2N − 1 distinct elements, for an element

• to be on the second level it must be less than ele-

ment(s) and greater than element(s).

• to be on the bottommost level it must be less than

element(s) and greater than element(s).

Hint: A complete binary tree (with a full last-level) has 2N − 1 elements,

with N being of levels.

2 Heaps & Hashing

2 Heap Mystery
We are given the following array representing a min-heap where each letter repre-

sents a unique number. Assume the root of the min-heap is at index zero, i.e. A

is the root. Note that there is no significance of the alphabetical ordering, i.e. just

because B precedes C in the alphabet, we do not know if B is less than or greater

than C.

Array: [A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is

either a removeMin or an insert. The resulting state of the min-heap is shown

below.

Array: [A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first op-

eration has already been filled in for you!

1. removeMin()

2.

3.

4.

(b) Fill in the following comparisons with either >, <, or ? if unknown. We

recommend considering which elements were compared to reach the final array.

1. X D

2. X C

3. B C

4. G X

Heaps & Hashing 3

3 Hashing Gone Crazy
For this question, use the following TA class for reference.

1 public class TA {

2 int charisma;

3 String name;

4 TA(String name, int charisma) {

5 this.name = name;

6 this.charisma = charisma;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return charisma;

16 }

17 }

Assume that the hashCode of a TA object returns charisma, and the equals method

returns true if and only if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as

depicted in lecture. The ECHashMap instance begins at size 4 and, for simplicity,

does not resize. Draw the contents of map after the executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA sohum = new TA("Sohum", 10);

3 TA vivant = new TA("Vivant", 20);

4 map.put(sohum, 1);

5 map.put(vivant, 2);

6

7 vivant.charisma += 2;

8 map.put(vivant, 3);

9

10 sohum.name = "Vohum";

11 map.put(vivant, 4);

12

13 sohum.charisma += 2;

14 map.put(sohum, 5);

15

16 sohum.name = "Sohum";

17 TA shubha = new TA("Shubha", 24);

18 map.put(shubha, 6);

4 Heaps & Hashing

4 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors

and briefly explain why they are incorrect and in which situations would the bug

cause problems.

1 class Timezone {

2 String timeZone; // "PST", "EST" etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }

	Discussion 10 Slides (Whiteboard)
	examprep10
	Fill in the Blanks
	Heap Mystery
	Hashing Gone Crazy
	Buggy Hash

