
CS 61B FA23

Asymptotics & Disjoint Sets
Exam Prep 06

CS 61B Fall 2023

Announcements

● Weekly Survey 5 due on Monday
9/25

● Proj 1C due on Monday 9/25

● Lab 6 due on Friday 9/29

● HW 2 due on Wednesday 10/4

CS 61B FA23

Content Review

CS 61B FA23

Asymptotics
Asymptotics allow us to evaluate the performance of programs using math. We ignore all constants and
only care about the total work done in regards to the input as it grows very large (usually defined as N)

Big O - The upper bound in terms of the input. In other words, if a function has big O in f(x), we say that
it could grow at most as fast as f(x), but it could grow more slowly.

Big Ω - The lower bound in terms of the input. In other words, if a function has big Ω in f(x), we say that it
could grow at least as slowly as f(x), but it could grow more quickly.

Big Θ - The tightest bound, which only exists when the tightest upper bound and the tightest lower
bound converge to the same value.

CS 61B FA23

Common Orders of Growth
● O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(cn)

● Alternatively: constant < logarithmic < linear < nlogn < quadratic < exponential

● Desmos example here

○ Constants don’t matter in the long run!

● Fun sums:
1 + 2 + 3 + . . . + N = Θ(N2)
1 + 2 + 4 + 8 + . . . + N = Θ(N)

https://www.desmos.com/calculator/uvcssrvq25

CS 61B FA23

Tightest Bound?
● Refers to the most “specific” bound possible

● Ex. Given f(n) = 2n + 5, we could say that f(n) ∈ O(nn), but that doesn’t tell us very much

○ a lot of functions are upper bounded by O(nn) (grows really fast!)

○ A better, tighter bound would be f(n) ∈ Θ(n)

CS 61B FA23

Best vs. Worst Case
● NOT based on size of the input; more about inputs that cause specific behavior

● Represented with tight bound Θ because they should be consistent (always run in the same time)

● Look out for branching statements, loop conditions, breaks

● Best/worst case vs. lower/upper bound analogy: how much does it cost to eat at a restaurant?

○ Best/worst-case: “the cheapest thing on the menu is $5 and the most expensive is $50”

○ Lower/upper bound: “every item is at least $5 and at most $50” (credit: Alex Schedel)

public static void example(int N) {
while (N > 0) {

if (func(N)) {
break;

}
N -= 1;

}
}

Best case: Θ(1), where N = some int for which func(N)
is immediately true

Worst case: Θ(N), where N = some int for which
func(N), func(N - 1), …, func(1) are all false

CS 61B FA23

public interface DisjointSet {
void connect (x, y); // Connects nodes x and y (you may also see union)
boolean isConnected(x, y); // Returns true if x and y are connected

}

QuickFind uses an array of integers to track which set each element belongs to.

QuickUnion stores the parent of each node rather than the set to which it belongs and merges sets by
setting the parent of one root to the other.

WeightedQuickUnion does the same as QuickUnion except it decides which set is merged into which by
size (merge smaller into larger), reducing stringiness.

WeightedQuickUnion with Path Compression sets the parent of each node to the set’s root whenever
find() is called on it.

Disjoint Sets, also known as Union Find

CS 61B FA23

public interface DisjointSet {
void connect (x, y); // Connects nodes x and y (you may also see union)
boolean isConnected(x, y); // Returns true if x and y are connected

}

Disjoint Sets Asymptotics

Implementation Constructor connect() isConnected()

QuickUnion Θ(N) O(N) O(N)

QuickFind Θ(N) O(N) O(1)

Weighted Quick Union Θ(N) O(log N) O(log N)

WQU with Path Compression Θ(N) O(log N)
Θ(1)-ish amortized

O(log N)
Θ(1)-ish amortized

* we don’t really talk about QU/QF in application, more to show the asymptotic motivation for WQU

CS 61B FA23

● We can use a single array to represent our disjoint set when implementing connect() optimally
(ie. WeightedQuickUnion)

● arr[i] contains the parent of element i in the set; the index of a root contains -(# elements
in set rooted at that index)

Disjoint Sets Representation

[-9, 0, 0, 0, 0, 1, 1, 3, 4] 2 3

876

4

5

0

1

CS 61B FA23

Worksheet

CS 61B FA23

1A Asymptotics Introduction

private void f1(int N) {
 for (int i = 1; i < N; i++) {
 for (int j = 1; j < i; j++) {
 System.out.println("shreyas 1.0");
 }
 }
}

CS 61B FA23

1A Asymptotics Introduction
private void f1(int N) {
 for (int i = 1; i < N; i++) {
 for (int j = 1; j < i; j++) {
 System.out.println("shreyas 1.0");
 }
 }
}

1 + 2 + 3 + 4 + … N-1 = Θ(N2)

i 1 2 … N-2 N-1

Work per i 0 1 … N-3 N-2

CS 61B FA23

1B Asymptotics Introduction

private void f2(int N) {
 for (int i = 1; i < N; i *= 2) {
 for (int j = 1; j < i; j++) {
 System.out.println("shreyas 2.0");
 }
 }
}

CS 61B FA23

1B Asymptotics Introduction
private void f2(int N) {
 for (int i = 1; i < N; i *= 2) {
 for (int j = 1; j < i; j++) {
 System.out.println("shreyas 2.0");
 }
 }
}

1 + 2 + 4 + 8 + … N/4 + N/2 = Θ(N)

i 1 2 4 … N/4 N/2

Work per i 0 1 3 … N/4 - 1 N/2 - 1

CS 61B FA23

2 Disjoint Sets

 i: 0 1 2 3 4 5 6 7 8 9

A. a[i]: 1 2 3 0 1 1 1 4 4 5
B. a[i]: 9 0 0 0 0 0 9 9 9 -10
C. a[i]: 1 2 3 4 5 6 7 8 9 -10
D. a[i]: -10 0 0 0 0 1 1 1 6 2
E. a[i]: -10 0 0 0 0 1 1 1 6 8
F. a[i]: -7 0 0 1 1 3 3 -3 7 7

For each of the arrays below, write whether this could be the array representation of a weighted quick union with
path compression.

CS 61B FA23

2 Disjoint Sets

 i: 0 1 2 3 4 5 6 7 8 9

A. a[i]: 1 2 3 0 1 1 1 4 4 5
B. a[i]: 9 0 0 0 0 0 9 9 9 -10
C. a[i]: 1 2 3 4 5 6 7 8 9 -10
D. a[i]: -10 0 0 0 0 1 1 1 6 2
E. a[i]: -10 0 0 0 0 1 1 1 6 8
F. a[i]: -7 0 0 1 1 3 3 -3 7 7

For each of the arrays below, write whether this could be the array representation of a weighted quick union with
path compression.

A. Impossible: cycle 0-1, 1-2, 2-3, and 3-0 in the parent-link
representation.

B. Impossible: 1, 2, 3, 4, and 5 must link to 0 when 0 is a root; 0
would not link to 9 because 0 is the root of the larger tree.

C. Impossible: tree rooted at 9 has height 9 >lg 10.
D. Possible: 8-6, 7-1, 6-1, 5-1, 9-2, 3-0, 4-0, 2-0, 1-0.
E. Impossible: tree rooted at 0 has height 4 >lg 10.
F. Impossible: tree rooted at 0 has height 3 >lg 7.

CS 61B FA23

3A Asymptotics of Weighted Quick Unions

Suppose we have a Weighted Quick Union (WQU) without path compression with N elements.

1. What is the runtime, in big Ω and big O, of isConnected?

2. What is the runtime, in big Ω and big O, of connect?

CS 61B FA23

3A Asymptotics of Weighted Quick Unions

Suppose we have a Weighted Quick Union (WQU) without path compression with N elements.

1. What is the runtime, in big Ω and big O, of isConnected?

2. What is the runtime, in big Ω and big O, of connect?

Ω(1), O(log(N))

Ω(1), O(log(N))

CS 61B FA23

3B Asymptotics of Weighted Quick Unions

void addToWQU(int[] elements) {
 int[][] pairs = pairs(elements); // constant, returns pairs in random order
 for (int[] pair: pairs) {
 if (size() == elements.length) { // constant
 return;
 }
 connect(pair[0], pair[1]);
 }
}

CS 61B FA23

3B Asymptotics of Weighted Quick Unions

Best case: Ω(N)
Connect all elements in first N calls, with
O(1) connect

Worst case: O(N2log(N))
One isolated element until last N calls →
N2 - N iterations, log N connect

void addToWQU(int[] elements) {
 int[][] pairs = pairs(elements);
 for (int[] pair: pairs) {
 if (size() == elements.length) {
 return;
 }
 connect(pair[0], pair[1]);
 }
}

CS 61B FA23

3C Asymptotics of Weighted Quick Unions
Define a matching size connection as connecting two trees, i.e. components in a WQU, together of
matching size. What is the minimum and maximum number of matching size connections that can occur
after executing addToWQU?

Assume N, i.e. elements.length, is a power of two.

CS 61B FA23

3C Asymptotics of Weighted Quick Unions
Define a matching size connection as connecting two trees, i.e. components in a WQU, together of
matching size. What is the minimum and maximum number of matching size connections that can occur
after executing addToWQU?

Assume N, i.e. elements.length, is a power of two.

Min: 1
Only one matching-size connection at beginning

Max: N - 1
Connect equal-size tree pairs until all are connected

CS 61B Asymptotics, Disjoint Sets
Fall 2023 Exam-Level 6: September 25, 2023

1 Asymptotics Introduction
Give the runtime of the following functions in Θ notation. Your answer should be as simple as possible with

no unnecessary leading constants or lower order terms.

private void f1(int N) {

for (int i = 1; i < N; i++) {

for (int j = 1; j < i; j++) {

System.out.println("shreyas 1.0");

}

}

}

Θ(___)

private void f2(int N) {

for (int i = 1; i < N; i *= 2) {

for (int j = 1; j < i; j++) {

System.out.println("shreyas 2.0");

}

}

}

Θ(___)

2 Disjoint Sets
For each of the arrays below, write whether this could be the array representation of a weighted quick union

with path compression and explain your reasoning.

i: 0 1 2 3 4 5 6 7 8 9

--

A. a[i]: 1 2 3 0 1 1 1 4 4 5

B. a[i]: 9 0 0 0 0 0 9 9 9 -10

C. a[i]: 1 2 3 4 5 6 7 8 9 -10

D. a[i]: -10 0 0 0 0 1 1 1 6 2

E. a[i]: -10 0 0 0 0 1 1 1 6 8

F. a[i]: -7 0 0 1 1 3 3 -3 7 7

Mobile User

2 Asymptotics, Disjoint Sets

3 Asymptotics of Weighted Quick Unions
Note: for all big Ω and big O bounds, give the tightest bound possible.

(a) Suppose we have a Weighted Quick Union (WQU) without path compression with N elements.

1. What is the runtime, in big Ω and big O, of isConnected?

Ω(______), O(______)

2. What is the runtime, in big Ω and big O, of connect?

Ω(______), O(______)

(b) Suppose for the following problem we add the method addToWQU to the WQU class. The method takes

in a list of elements and connects them in a random order, stopping when all elements are connected.

Assume that all the elements are disconnected before the method call.

1 void addToWQU(int[] elements) {

2 int[][] pairs = pairs(elements);

3 for (int[] pair: pairs) {

4 if (size() == elements.length) {

5 return;

6 }

7 connect(pair[0], pair[1]);

8 }

9 }

The pairs method takes in a list of elements and generates all possible pairs of elements in a random

order. For example, pairs([1, 2, 3]) might return [[1, 3], [2, 3], [1, 2]] or [[1, 2], [1, 3],

[2, 3]].

The size method calculates the size of the largest component in the WQU.

Assume that pairs and size run in constant time.

What is the runtime of addToWQU in big Ω and big O?

Ω(______), O(______)

(c) Let us define a matching size connection as connecting two components in a WQU of equal size.

For instance, suppose we have two trees, one with values 1 and 2, and another with the values 3 and 4.

Calling connect(1, 4) is a matching size connection since both trees have 2 elements.

What is the minimum and maximum number of matching size connections that can occur after

executing addToWQU. Assume N, i.e. elements.length, is a power of two. Your answers should be exact.

minimum: _____, maximum: _____

Mobile User

	aniruth Exam Level 06 Slides (Whiteboard)
	examlevel06

