
CS 61B Fall 2023

Iterators, Iterable,
Polymorphism

Exam-Level 05

CS 61B Spring 2023

Announcements

● Weekly Survey 4 due Monday 9/18

● Lab 5 Timing (optional) released

● Project 1B due Monday 9/18

● Midterm 1 Thursday 9/21 7-9PM

● Project 1C due Monday 9/25

CS 61B Spring 2023

Content Review

CS 61B Spring 2023

Polymorphism in programming describes the ability for methods to work on a variety of types. This gives
us more general code, or in other words, a single uniform interface that can work with many types.

Subtype polymorphism describes the fact that subtypes of a Class or Interface are also instances of that
Class or Interface. Any method that takes in the parent type will take in an instance of the subtype, ie:

public ComparableArray <T implements Comparable> implements Comparable { ... }

Our ComparableArray is polymorphic: it works with any type that is comparable (and we bind our generic
T to be Comparable items only). Now we can do:

T item1 = ...;
T item2 = ...;
item1.compareTo(item2);

Subtype Polymorphism

CS 61B Spring 2023

Comparators are an example of how subtype polymorphism is commonly used.

public interface Comparator<T> {
int compare(T o1, T o2);

}

The Comparator interface’s compare function takes in two objects of the same type and outputs:

- A negative integer if o1 is “less than” o2
- A positive integer if o1 is “greater than” o2
- Zero if o1 is “equal to” o2

An object is determined to be “less than” or “greater than” or “equal to” another object based on how
a class that implements Comparator fills in its own compare. This allows us to compare things that
aren’t inherently numerical (ie. Dogs)

Example: Comparators

CS 61B Spring 2023

Interfaces vs. Classes Refresher

● A class can implement many interfaces and extend only one class

● Interfaces tell us what we want to do but not how; classes tell us how we want to do it

● Interfaces can have empty method bodies (that must be filled in by subclasses) or
default methods (do not need to be overridden by subclasses)

● With extends, subclasses inherit their parent’s (non-private) instance and static
variables, methods (can be overridden), nested classes

○ But not constructors!

○ Use super to refer to the parent class

CS 61B Spring 2023

The Iterator & Iterable Interfaces
Iterators are objects that can be iterated through in Java (in some sort of loop).

public interface Iterator<T> {
boolean hasNext();
T next();

}

Iterables are objects that can produce an iterator.
public interface Iterable<T> {

Iterator<T> iterator();
}

You might have seen syntax like
for (String x : lstOfStrings) // Lists, Sets, Arrays are all Iterable!

which is shorthand for
for (Iterator<String> iter = lstOfStrings.iterator(); iter.hasNext();) {

SomeObject x = iter.next();
}

CS 61B Spring 2023

Generics are how we parameterize over types.

This is an example from the Oracle java
documentation.

Using generics allows us to specify some degree of
information beyond Object (which is not very useful for
us).

Autoboxing allows us to leverage things like int to
become Integers (primitive in their reference
variations).

Generics and Parameterization

https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

CS 61B Spring 2023

An Aside: Parameterization and Casting
- Use this slide as you see fit/change it up/write your own/ignore it, but the tldr is that:

- A lot of students don’t really understand parameterization (the <>)
- I got a really really good question about the purpose of casting because for most of the

discussion 04 problems, casting didn’t make a difference in what method ultimately got run
(it’s possible, but often comes from the gnarlier DMS cases we don’t really teach anymore)

- This student’s post on Ed sums things up pretty nicely!
- Basically, casting is nice when we have generic/general types or contexts but we want more

specialized behavior in certain contexts where we know for sure/are guaranteed that treating
the object like the cast type will work

- ie. equals(Object o1, Object o2) in proj 1c!
- In this worksheet, we don’t really force students’ hands to parameterize their parent classes in the

implements lines, but it’s necessary to avoid nastiness (aka casting), because otherwise the method
signatures that must be overridden have argument/return types that are super generic, like Object

- This might be better demonstrated with an actual example, possibly in IntelliJ, so students can see
this

https://edstem.org/us/courses/25759/discussion/2551670

CS 61B Spring 2023

Check for Understanding
1. If we were to define a class that implements the interface Iterable<Dog>, what method(s) would this class need
to define?

2. If we were to define a class that implements the interface Iterator<Integer>, what method(s) would this class
need to define?

3. What’s one difference between Iterator and Iterable?

CS 61B Spring 2023

Check for Understanding
1. If we were to define a class that implements the interface Iterable<Dog>, what method(s) would this class need
to define?

public Iterator<Dog> iterator()

2. If we were to define a class that implements the interface Iterator<Integer>, what method(s) would this class
need to define?

public boolean hasNext()
public Integer next()

3. What’s one difference between Iterator and Iterable?

Iterators are the actual object we can iterate over (ie. think a Python generator over a list).
Iterables are object that can produce an iterator that somehow iterate over its contents, usually some kind of
collection (ie. an array is iterable; an iterator over the array could go through the element at every index of the array).

CS 61B Spring 2023

== vs. .equals()
● == compares the literal bits at the location of the variable; typically only used for primitive types

○ it will compare the memory addresses of two reference types, which can be useful when
trying to determine if two variables point to the same object in memory

○ the exception to this is null - special pointer that is compared with ==

● Alternative for reference types: .equals() (ex. myDog.equals(yourDog))

○ This can be overridden on a class-by-class basis, but defaults to Object’s .equals()
(which just compares memory addresses, like ==!)

○ ie. say we make the Dog .equals() method return true if both Dogs have the same name

■ Dog fido = new Dog(“Fido”); Dog otherFido = new Dog(“Fido”);

■ fido == otherFido -> false, but fido.equals(otherFido) -> true

CS 61B Fall 2023

Worksheet

CS 61B Fall 2023

1 Take Us to Your "Yrnqre"
Given the AlienAlphabet class, fill in AlienComparator
class so that it compares strings lexicographically, based on
the order passed into the AlienAlphabet constructor. For
simplicity, you may assume all words passed into
AlienComparator have letters present in order.

For example, if the alien alphabet has the order "dba...",
which means that ‘d’ is the first letter, ‘b’ is the second
letter, and so on.
AlienAlphabet.AlienComparator.compare("dab",
"bad") should return a value less than 0, since “dab” comes
before “bad”.

If one word is an exact prefix of another, the longer word
comes later. For example, "bad" comes before "badly".

public class AlienAlphabet {
 private String order;

 public AlienAlphabet(String o) {
 order = o;
 }
}

CS 61B Fall 2023

1 Take Us to Your "Yrnqre"
 public class AlienComparator implements Comparator<____________> {
 public int compare(String word1, String word2) {
 int minLength = Math.min(__________________, __________________);
 for (__) {
 int char1Rank = __;
 int char2Rank = __;
 if (__) {
 return -1;
 else if (__) {
 return 1;
 }
 }
 return _______________________________ -
_______________________________;
 }
 }

CS 61B Fall 2023

1 Take Us to Your "Yrnqre"

 public class AlienComparator implements Comparator<String> {
 public int compare(String word1, String word2) {
 int minLength = Math.min(word1.length(), word2.length());
 for (int i = 0; i < minLength; i++) {
 int char1Rank = order.indexOf(word1.charAt(i));
 int char2Rank = order.indexOf(word2.charAt(i));
 if (char1Rank < char2Rank) {
 return -1;
 } else if (char1Rank > char2Rank) {
 return 1;
 }
 }
 return word1.length() - word2.length();
 }
 }

CS 61B Fall 2023

2 Iterator of Iterators
private class IteratorOfIterators _____________ {
 public IteratorOfIterators(List<Iterator<Integer>> a) {

 }

 public boolean hasNext() {

 }

 public Integer next() {

 }

}

CS 61B Fall 2023

2 Iterator of Iterators - Solution 1
private class IteratorOfIterators implements Iterator<Integer> {
 LinkedList<Iterator<Integer>> iterators;

 public IteratorOfIterators(List<Iterator<Integer>> a) {
 iterators = new LinkedList<>();
 for (Iterator<Integer> iterator : a) {
 if (iterator.hasNext()) {
 iterators.add(iterator);
 }
 }
 }

 ...
}

CS 61B Fall 2023

2 Iterator of Iterators - Solution 1
private class IteratorOfIterators implements Iterator<Integer> {
 LinkedList<Iterator<Integer>> iterators;
 public IteratorOfIterators(List<Iterator<Integer>> a) { ... }

 public boolean hasNext() {
 return !l.isEmpty();
 }

 public Integer next() {

 }
}

CS 61B Fall 2023

2 Iterator of Iterators - Solution 1
private class IteratorOfIterators implements Iterator<Integer> {
 LinkedList<Iterator<Integer>> iterators;
 public IteratorOfIterators(List<Iterator<Integer>> a) { ... }

 public boolean hasNext() {
 return !iterators.isEmpty();
 }

 public Integer next() {
 Iterator<Integer> nextIter = iterators.removeFirst();
 Integer nextItem = nextIter.next();

 if (nextIter.hasNext()) {
 l.addLast(nextIter);

 }
 return nextItem;

 }
}

CS 61B Fall 2023

2 Iterator of Iterators - Alternate
private class IteratorOfIterators implements Iterator<Integer> {
 LinkedList<Integer> l;

 public IteratorOfIterators(List<Iterator<Integer>> a) {
 l = new LinkedList<>();
 while (!a.isEmpty()) {
 Iterator<Integer> curr = a.remove(0);
 if (curr.hasNext()) {
 l.add(curr.next());
 a.add(curr);
 }
 }
 }

 ...
}

CS 61B Fall 2023

2 Iterator of Iterators
private class IteratorOfIterators implements Iterator<Integer> {
 LinkedList<Integer> l;
 public IteratorOfIterators(List<Iterator<Integer>> a) { ... }

 public boolean hasNext() {
 return !l.isEmpty();
 }

 public Integer next() {

 }
}

CS 61B Fall 2023

2 Iterator of Iterators
private class IteratorOfIterators implements Iterator<Integer> {
 LinkedList<Integer> l;
 public IteratorOfIterators(List<Iterator<Integer>> a) { ... }

 public boolean hasNext() {
 return !l.isEmpty();
 }

 public Integer next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 return l.removeFirst();
 }
}

CS 61B Comparators, Iterators
Fall 2023 Exam-Level 5: September 18, 2023

1 Take Us to Your ”Yrnqre”
You’re a traveler who just landed on another planet. Luckily, the aliens there use the same alphabet as the

English language, but in a different order.

Given the AlienAlphabet class below, fill in AlienComparator class so that it compares strings lexicograph-

ically, based on the order passed into the AlienAlphabet constructor. For simplicity, you may assume all

words passed into AlienComparator have letters present in order.

For example, if the alien alphabet has the order "dba...", which means that d is the first letter, b is the

second letter, etc., then AlienComparator.compare("dab", "bad") should return a negative value, since dab

comes before bad.

If one word is an exact prefix of another, the longer word comes later. For example, "bad" comes before

"badly". Hint: indexOf might be helpful.

1 public class AlienAlphabet {

2 private String order;

3 public AlienAlphabet(String alphabetOrder) {

4 order = alphabetOrder;

5 }

6 public class AlienComparator implements Comparator<____________> {

7 public int compare(String word1, String word2) {

8

9 int minLength = Math.min(_______________________, _______________________);

10

11 for (___) {

12

13 int char1Rank = __;

14

15 int char2Rank = __;

16

17 if (__) {

18 return -1;

19

20 } else if (__) {

21 return 1;

22 }

23 }

24

25 return _______________________________ - _______________________________;

26 }

27 }

28 }

2 Comparators, Iterators

2 Iterator of Iterators
Implement an IteratorOfIterators which takes in a List of Iterators of Integers as an argument . The

first call to next() should return the first item from the first iterator in the list. The second call should

return the first item from the second iterator in the list. If the list contained n iterators, the n+1th time that

we call next(), we would return the second item of the first iterator in the list.

Note that if an iterator is empty in this process, we continue to the next iterator. Then, once all the

iterators are empty, hasNext should return false. For example, if we had 3 Iterators A, B, and C such

that A contained the values [1, 3, 4, 5], B was empty, and C contained the values [2], calls to next()

for our IteratorOfIterators would return [1, 2, 3, 4, 5].

import java.util.*;

public class IteratorOfIterators ______________________________ {

public IteratorOfIterators(List<Iterator<Integer>> a) {

}

@Override

public boolean hasNext() {

}

@Override

public Integer next() {

}

}

	aniruth Exam Level 05 Slides (Whiteboard)
	examlevel05
	Take Us to Your "Yrnqre"
	Iterator of Iterators

