Scope, Static, Linked Lists,
Arrays

Exam-Level 03

CS 61B Spring 2023

Agenda

9:10 - 9:15 ~ hello! & announcements
9:15 - 9:25 ~ content review

9:25 - 9:40 ~ question 3

9:40 - 9:55 ~ question 2

Question 1 if time (probably not)

Meet Your TA!

Hi! I'm Aniruth.

- He series

- aniruth.n@berkeley.edu

- EECS and Business

- Senior

- Coming off a gap year! Last was in school (and TA'd 61B)
in Spring 2022

- Cook a lot (probably too much, food mad expensive)

- Have a 43 inch monitor in my room

- Former 61Baller

CS 61B Spring 2023

Announcements

Content Review

CS 61B Spring 2023

GRoE: Golden Rule of Equals

“Given variables y and x:
y = X copies all the bits from x into y."”

Java is pass-by-value: when you call a function and give it some arguments, the function called
receives an exact copy of those arguments, tied to its own local variables.

“Copies all the bits” means different things for primitive vs. reference types.

CS 61B Spring 2023

Primitive vs. Reference Types

e Primitive Types are represented by a certain number of bytes stored at the location of the variable
in memory. There are only 8 in Java.

Examples: byte, short, int, long, float, double, boolean, char
e Reference Types are represented by a memory address stored at the location of the variable
which points to where the full object is (all objects are stored at addresses in memory). This

memory address is often referred to as a pointer.

Examples: Strings, Arrays, Linked Lists, Dogs, etc.

CS 61B Spring 2023

Back to the GRoE

“Given variables y and x:
y = X copies all the bits from x into y.”

e The value of a primitive type gets copied directly upon variable assignment
o Ex. int x = 5; means that variable x stores the value of 5
e The value of a reference type is a “shallow” copy upon variable assignment: the pointer (memory

address) is copied, and the object itself in memory is not
o Exception: null is a special pointer that we compare with ==

CS 61B Spring 2023

A Quick Example

int x = 5;
int[] arr = new int[]31, 2, 3, 5%; X | 5

arr 1123 |5

CS 61B Spring 2023

A Quick Example

int x = 5;
int[] arr = new int[]31, 2, 3, 5%; X | 5
doSomething(x, arr);

arr 112|145
public void doSomething(int y, int[] other) 3%
y =9;
other[2] = 4; y | “
£
other | —

CS 61B Spring 2023

Static vs. Instance, Revisited

Static variables and functions belong to the whole class.
Example: Every 61B Student shares the same professor, and if the professor were to change it would
change for everyone.

Instance variables and functions belong to each individual instance.
Example: Each 61B Student has their own ID number, and changing a student’s ID number doesn’t
change anything for any other student.

CS 61B Spring 2023

this vs. static

e this
o Non-static methods can only be called using an instance of that object, so during evaluation
of that function, you will always have access to this instance of the object, referred to as this

e static methods
o do not require an instance of that object in order to be called, so during evaluation of that
function, you cannot rely on access to this instance of the object

e static variables
o shared by all instances of the class; each instance does not get its own copy but can access

e Check for understanding: can you reference this in static methods? Can you reference static

variables in instance methods? Why or why not?

CS 61B Spring 2023

Arrays

Arrays are data structures that can only hold elements of the same (primitive or reference) type of value.
arr[i] holds a value in the ith position of the array (zero-indexed). We can also have n-dimensional
arrays (ie. int[J[] a = new int[3][2]; you can index into these like a[2] [1])

Cat Cat Cat
id | 2 id | 4 id | 8
age | © age | 9 age | 1
41118
O 1 2 0O 1 2

Arrays have a set length when instantiated, so they cannot be extended / shortened with pointers like a
Linked List. To resize, we need to copy over all elements to a new array (ie. System.arraycopy)

CS 61B Spring 2023

Linked Lists

Linked Lists are modular lists that are made up of nodes that each contain a value and a pointer to the
next node. To access values in a Linked List, you must use dot notation.
Example: intList.get(2)

e Can be extended or shortened by changing the pointers of its nodes (unlike arrays)

e Can't be indexed directly into like an array: instead, the computer has to iterate through all of the
nodes up to that point and follow their next pointers

e Asentinel is a special type of node that is often used as an empty placeholder for ease of adding /
deleting nodes, especially from the front or back of the Linked List

o In a circular doubly-linked implementation, the sentinel’s next and prev pointers are the first

and last nodes respectively

CS 61B Spring 2023

Approaching Exam Questions

Two step process:

1. Understand the question
2. Solve
a. Find the Key Insight

CS 61B Spring 2023

Worksheet

CS 61B Spring 2023

3 Remove Duplicates

Using the simplified DLList class, implement
the removeDuplicates method.

removeDuplicates should remove all
duplicate items from the DLList. For example,
if our initial list [8, 4, 4, 6, 4, 10, 12,
12], our final list should be [8, 4, 6, 10,
12]. You may not assume that duplicate items
are grouped together, or that the list is sorted!

public class DLList {
Node sentinel;

public DLList() %

//
£
public class Node {
int item;
Node prev;
Node next;

CS 61B Spring 2023

3 Remove Duplicates

Node ref = ;

while (e) 3
checker = .~~~ ;
while (_____) 3

it (o) 1
Node checkerPrev = checker.prev;
Node checkerNext = checker.next;
checker = .~~~ ;
t else %
checker = .~~~ ;
£
£
ret=-_______ ;
£

CS 61B Spring 2023

3 Remove Duplicates

Node ref = sentinel.next;
Node checker;
while (ref != sentinel) {
checker = ref.next;
while (checker != sentinel) 3
if (ref.item == checker.item) 1%
Node checkerPrev checker.prev;
Node checkerNext checker.next;
checkerPrev.next checker.next;
checkerNext.prev = checker.pzrev;
checker = checkerNext;
} else %
checker = checker.next;

ref ref.next;

CS 61B Spring 2023

2 Partition

Implement partition, which takes in an IntList 1st and an integer k, and destructively partitions Ist
into K IntLists such that each list has the following properties:

e |tis the same length as the other lists. You may assume it is evenly divisible.

e lIts ordering is consistent with the ordering of 1st.

These lists should be put in an array of length k, and this array should be returned.

For instance, if 1st contains the elements 5, 4, 3, 2, 1, and k = 2, then a possible partition is putting
elements [5, 3, 2] at index O, and elements [4, 1] at index 1.

You may assume you have the access to the method reverse, which destructively re-

verses the ordering of a given IntlList and returns a pointer to the reversed IntList. You may not create any
IntList instances.

CS 61B Spring 2023

2 Partition

public static IntList[] partition(IntList 1st, int k) {
IntList[] array = new IntList[k];
int index = 0;
IntList L =

return array;

CS 61B Spring 2023

2 Partition

public static IntList[] partition(IntList 1st, int k) {
IntList[] array = new IntList[k];
int index = 0;
IntList L reverse(lst);
while (L != null) 3
IntList prevAtIndex = array[index];
IntList next L.rest;
array[index] L;
array[index].rest = prevAtIndex;
L = next;
index = (index + 1) % array.length;

§

return array;

CS 61B Spring 2023

1 Boxes and Pointers

IntList L1 IntList.list(1, 2, 3);
IntList L2 = new IntList(4, Ll.rest);
L2.rest.first = 13;

L1.rest.rest.rest = L2;

IntList L3 = IntList.list(50);
L2.rest.rest = L3;

o O WDN P

CS 61B Spring 2023

1 Boxes and Pointers

oS~k WEDNPRE

L1

L2

L3

IntList.list(1, 2, 3);
new IntList(4,

L3 = IntList.list(50);

/“

IntList L1 =

IntList L2 =

.rest);

L2.rest.first = 13;

L1.rest.rest.rest = L2;

IntList

L2.rest.rest = L3;
—P1 1
—P 4
—>| 50

CS 61B Spring 2023

o 3] EN w

S 61B Arrays, Linked Lists
FaH 2023 Exam-Level 3: September 4, 2023

1 Boxes and Pointers
Draw a box and pointer diagram to represent the IntLists L1, L2, and L3 after each statement.
IntList L1 = IntList.list(1, 2, 3);

IntList L2 = new IntList(4, L1.rest);
L2.rest.first = 13;&—

L1.rest.rest.rest = L2; & L] L.___) ED_,

IntList L3 = IntList.list(50);

L2.rest.rest = L3;
_/-’_9
L2(@

Ceclr colov 15 o J.'f«ce/e.\-’— 5-}¢P,’

20

21

22

2 Arrays, Linked Lists

2 Partition

Implement partition, which takes in an IntList lst and an integer k, and destructively partitions 1st into
k IntLists with the following properties:

e It is the same length as the other lists. You may assume the IntList is evenly divisible.

e Its ordering is consistent with the ordering of 1st, i.e. items in earlier in 1st must precede items that

are later.

These lists should be put in an array of length k, and this array should be returned.
For instance, if 1st contains the elements 6, 5, 4, 3, 2, 1, and k = 2, then a possible partition, is putting

elements [6 4, 2] at index 0, and elements [5, 3, 1] at index 1.

You may assume you have the access to the method reverse, which destructively reverses the ordering
of a given IntList and returns a pointer to the reversed IntList. Hint: Think about how to build up the

T !
?n’”‘/ wlfff’ lmh".

IntList backward at each index, starting with null.

You may not create any IntList instances. Osder of (""I’
¢ 19 17
public static IntList[] partition(IntList 1st, int k) { 21 n
IntList[] array = new IntList[k];d Use index o inder info o™/ .
int index = 0; E:aw"‘ 3 Li
IntList L = reverse (lst) L=>L,% 2

while (L != null) {

|
Gwe CO -
Thtlit cw= awa\/cin&f’a} el]

[(102

awey (01 3 !

Twtlist wext = L.rest!

awoy Linde) = L;

lehon®

13 17

S, 6

Ay Cindex) . rest = cvrv, ley Tosight* ed
¥ 5‘/\?‘“’\'1\7 ouer 15 4&4«1, Ne
b ortcle o Pefn-lef 't,:g;:;bk
- ' Ly amb dre nert YO '
i nex R hew ot Hue e
o LY P
index = _ndes+\ % __K ; n.

3

return array;

} 4 peeds o be shed s
. 4‘, L -1 neéas
! ' Ll “F !)
Tutal Solvhor’ Pl ;4-3 proteed (sinee boest s et &
_ cor). homged o oy Cinde
I.W\’L's* cwr = ﬂ"ﬁy E;n&fi]} -:‘ hls R | &'ZJ‘-W' q
."‘ _ . bo*h are "Hﬂe San€
amr C lﬂj = L/

L.resy = curr:

/

Arrays, Linked Lists 3

3 Remove Duplicates

Using the simplified DLList class defined on the next page, implement the removeDuplicates method.

removeDuplicates should remove all duplicate items from the DLList. For example, if our initial list is [8,
4, 4,6, 4, 10, 12, 121, our final list should be [8, 4, 6, 10, 12]. You may not assume that duplicate

items are grouped together, or that the list is sorted!

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Arrays, Linked Lists

public class DLList {

Node sentinel;

public DLList() {
/...

public class Node {

When ,{;\(@ appre ulu'nﬂ

|Key Trsight*
the pro blem - ook at fie IE‘F, checher,
TL\lsé ove “Hl& Lu'n"& own ‘H‘C Shkoy v.\egl

i i N thown.) .
int item; md while Cov\Jl i e te abion-
NOde prev; h&ﬂ . Also no h’tt fl‘r 5 (f&ﬂ"‘ed On "y

Node next; o .
) Next s fle wmer while [oDP, Te else condhon 15 Ome l'ne

so leep goirg) W

public void removeDuplicates() {

Node ref = genhnre| nexd

checher.

Oft!" 04‘ Coypk'[’-‘“:
16,4, u3

Node checker;

while (re€ !=_adl

’ 2()&3, 30(
25,3%2,%, 5
) {

checker = fe‘t- next

while (checher 'z ndl

) {

if (red._itewm= checher. item

) {

-~ >
cheche- P'Wg cheche- cheche- Next

Node checkerPrev = checker.prev; reﬂc.:’
Node checkerNext = checker.next;
U be chechePron. nest = cheche Next
Cov
dove In
2 lire s [\neclder Nex*. ‘och = oheahev Prev
" checker = _checher Next
} else {
checker = _checker. next
3
}

ref = yef. next

	aniruth Exam Level 03 Slides.pdf
	examlevel03
	Boxes and Pointers
	Partition
	Remove Duplicates

