Sorting

Exam Prep 12

CS 61B Fall 2023

Announcements

Content Review

CS 61B Fall 2023

Insertion Sort

Insertion sort iterates through the list and swaps items backwards as necessary to maintain sortedness.

35124

Runtime: O(N?)
CS 61B Fall 2023

Selection Sort

Selection sort finds the smallest remaining element in the unsorted portion of the list at each time step

and swaps it into the correct position.

35124

Runtime: O(N?)

CS 61B Fall 2023

Merge Sort

Merge sort splits the list in half, applies merge sort to each half, and then merges the two halves
together in a zipper fashion.

35124

Runtime: ©(NlogN)

CS 61B Fall 2023

Quicksort

Quicksort picks a pivot (ie. first element) and uses Hoare partitioning to divide the list so that everything
greater than the pivot is on its right and everything less than the pivot is on its left.

35124

Runtime: Average case O(NlogN), slowest case O(N?) (dependent on pivot selection)

CS 61B Fall 2023

Heap Sort

Heapsort heapifies the array into a max heap and pops the largest element off and appends it to the end
until there are no elements left in the heap. You can heapify by sinking nodes in reverse level order.

35124

Runtime: O(NlogN)
CS 61B Fall 2023

Summary for comparison sorts

Stability: a sort is stable if duplicate values remain in the same relative order after sorting as they were

initially. In other words, is 2a guaranteed to be before 2b after sorting the list [2a, 2b, 1]?

Worst Case Best Case Stable?
Selection Sort O(N?) O(N?) No
Insertion Sort O(N?) O(N) Yes
Merge Sort O(NlogN) O(NIogN) Yes
Quicksort O(N?) O(NlogN) No*
Heapsort O(NlogN) O(N) No

Try reasoning out or coming up with examples for these best and worst case runtimes!

*with hoare partitioning

CS 61B Fall 2023

Worksheet

CS 61B Fall 2023

Co 61B Sorting
Fall 2023 Fxam-Level 12: November 6, 2023

| Identﬂ&ing Sorts

Below you will find intermediate steps in performing various sorting algorithms on the same input list.
The steps do not necessarily represent consecutive steps in the algorithm (that is, many steps are missing),
but they are in the correct sequence. For each of them, select the algorithm it illustrates from among the
following choices: insertion sort, selection sort, mergesort, quicksort (first element of sequence as pivot), and
heapsort. When we split an odd length array in half in mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000
M eresort

(a) 1429, 3291, 7683, 1337, 192| 594, 4242, 9001, 4392, 129, 1000 S cxcn Kot

1429, 3291| 192, 1337, 7683| 594, 4242, 9001| 129, 1000, 4392
192, 1337, 1429, 3291, 7683| 129, 594, 1000, 4242, 4392, 9001

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392
192, 594, 129, 1000, 1337, 1429, 3201, 7683, 4242, 9001, 4392
129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

(c) 1337, 1429, 3291, 7683 192, 594, 4242, 9001, 4392, 129, 1000
192, 1337, 1429, 3291, 7683. 594, 4242, 9001, 4392, 129, 1000
192, 594, 1337, 1429, 3291, 7683. 4242, 9001, 4392, 129, 1000

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192 ¥
Hcap sof

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129] 9001
129,4392,4242,3291,1000,594,192,1337,1429‘7683,9001

1
Heap Stvibve witth weontinwwm ele veorts
at ‘hrt ‘:om{’

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Mobile User

2 Sorting

2 Conceptual Sorts

Answer the following questions regarding various sorting algorithms that we’ve discussed in class. If the
question is T/F and the statement is true, provide an explanation. If the statement is false, provide a

counterexample.

(a) We have a system running insertion sort and we find that it’s completing faster than expected. What
could we conclude about the input to the sorting algorithm?

Vﬂﬁf‘v govied - hence vL“/ R STRS onh wed for dakbuse ins erfonn

(b) Give a 5 integer array that elicits the worst case runtime for insertion sort.

DC&C“J«"’Q orJffCoppo;fk o'r a)

T 41 21

(¢) (T/F) Heapsort is stable.

Palse - fre b\egpf‘:'uh'ou QUFPI(; 'Hn-'—9 ml’ sou.Mr—‘f arb-'"'mv{ly

(d) Give some reasons as to why someone would use mergesort over quicksort.

Wost case punhune (& beler — NlogN s Vi

S"'ﬁb-‘“h/- eyl s, QV"”L I'SV\'J'

Mobile User

Sorting 3

(e) You will be given an answer bank, each item of which may be used multiple times. You may not need

to use every answer, and each statement may have more than one answer.

A. QuickSort (in-place using Hoare partitioning and choose the leftmost item as the pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer is none of them, use N
indicating none of the above. All answers refer to the entire sorting process, not a single step of the

sorting process. For each of the problems below, assume that N indicates the number of elements being

sorted.
A,G,C Bounded by Q(N log N)lower bound. Tuserkon: Sorded tukes N
Heepiwrt: Tdonbcel iloms tubes N ('\° "”f"‘k“k'“ m‘ld)
@, E Has a worst case runtime that is asymptotically better than Quicksort’s worstcase
runtime. Needs M..svu werst Oase

Trserkion- sWwbfles pew e loochwords
A, 3'. D Never compares the same two clements twice. Quich- piwt geb sef oand newes wed
Mene - on(\' does PA"M'K one in each stocy

W_(Nowe) Runs in best case ©(log N)time for certain inputs

)
_(L(A;) vequived o o leat chech all iews

Mobile User

4 Sorting

3 Bears and Beds

In this problem, we will see how we can sort “pairs” of things without sorting out each individual entry.
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help them place their bear
customers in the best possible beds to improve their experience. Now, a little known fact about bears is that
they are very, very picky about their bed sizes: they do not like their beds too big or too little - they like
them just right. Bears are also sensitive creatures who don’t like being compared to other bears, but they
are perfectly fine with trying out beds.

The Problem:
e Inputs:
— A list of Bears with unique but unknown sizes
— A list of Beds with unique but unknown sizes
— Note: these two lists are not necessarily in the same order
e Output: a list of Bears and a list of Beds such that the ith Bear is the same size as the ith Bed
e Constraints:

— Bears can only be compared to Beds and we can get feedback on if the Bed is too large, too small,
or just right.

— Beds can only be compared to Bears and we can get feedback on if the Bear is too large, too
small, or just right for it.

= it fo qm’dﬁof“.
— Your algorithm should run in O(N log N) time on average. ww,} wovldn'd wovh

Tna a\r&f b o te cwss Cov\pa\&ov\) vre qm'bt\sof"' ‘
> y with ofter Cowpavion sorbs behreen s 10D

Big idea: Use Hue piwt o ove bt do sort ond Rnd e.'v;.rj.lhl' pivot in ote oot

Ve iy b sord e o} sk

Mobile User

	Exam-Level Discussion 12 Slides
	examlevel12

