Graphs I, Tries

Exam Prep 11

CS61B FA23

Announcements

Content Review

CS61B FA23

Topological Sort

Topological Sort is a way of transforming a directed acyclic graph into a linear ordering of vertices, where
for every directed edge u v, vertex u comes before v in the ordering.

N\,
VA

CS61B FA23

Topological Sort

Key Ideas:
- Not having a topological sort indicates a that the graph has directed cycle (only works on DAGs)
- Most DAGs have multiple topological sorts
- Source node: a node that has no incoming edges
- Sink node: a node that has no outgoing edges

AN 7Y

N
/ "/

ol
N
o
N
w
-

C

CS61B FA23

Graph Algorithm Runtimes

For a graph with V vertices and E edges:

Graph Algorithm Runtime
DFS O(V+E)
BFS O(V+E)
Dijkstra's O((V + E) log V)
A* O((V + E) log V)
Prim’s O((V + E) log V)
Kruskal’s O(E log E)

CS61B FA23

Tries

Tries are special trees mostly used for language tasks.

Each node in a trie is marked as being a word-end (a “key”) or not, so you can quickly check whether a
word exists within your structure.

Y\
C D
! b
A o |
| ! |

CS61B FA23

Trie Operations

Longest prefix of: follow the trie until the letters no longer match, keeping track of the most recent “end”

Y\

C D
longestPrefixOf(" catchall”) — ' ' \
“catch” A O I

. ! .

.

C

}

CS61B FA23

Trie Operations

Keys with prefix: follow until the end of the prefix, then traverse all words below that node.

Y\

C D
keysWithPrefix(“ca”) — “catch”, ' ' \
“cat” A O I

v v v

v

C

¥

CS61B FA23

Worksheet

CS61B FA23

CS 618 Graphs H, Tries
FaH 2023 Exam-Level 11: October 30, 2023

1

Multiple MSTs

Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

(a)

For each subpart below, select the correct option and justify your answer. If you select “never” or
“always,” provide a short explanation. If you select “sometimes”, provide two graphs that fulfill the
given properties — one with multiple MSTs and one without. Assume G is an undirected, connected

graph with at least 3 vertices.
1. If some of the edge weights are identical, there will A

(O never be multiple MST's in G.
e ©
gsometimes be multiple MSTs in G.

(O always be multiple MSTs in G. for bohn® Conchuet m dree - sk be e m‘, MST

Justification: |
Can also const et exawples fhat work - sowmebne

2. If all of the edge weights are identical, there will
(O never be multiple MSTs in G. A
2/ \ ¥
dsometimes be multiple MSTs in G. g — ¢
v
(O always be multiple MST's in G.

Justification:

Suppose we have a connected, undirected graph G with IV vertices and N edges, where all the edge
weights are identical. Find the maximum and minimum number of MSTs in G and explain your

reasoning.

Justification:

Thiak of walbing o lee and Jd&n—.‘nffy whee fre last elgc 9o0es

a\a\ C‘AS{ o‘(‘ } - Can ()A'OL‘ GW\/ CJ?‘ Dp {1(3 /"v réwove

(ase o‘r N = Com r){& any e&5¢, in He (OOP

N vorkas) Yo rewove

-l edges 7 /

G

Mobile User

2 Graphs II, Tries

(c) Tt is possible that Prim’s and Kruskal’s find different MSTs on the same graph G (as an added exercise,
construct a graph where this is the case!). Given any graph G with integer edge weights, modify the
edge weights of G to ensure that (1) Prim’s and Kruskal’s will output the same results, and (2) the
output edges still form a MST correctly in the original graph. You may not modify Prim’s or Kruskal’s,
and you may not add or remove any nodes/edges.

Hint: Look at subpart 1 of part a.
Diblocnt bused on ovder of comstlerction(i- €. Fitbrealing schewe)

b
(l/‘
c

So\\A'(ar" no sinilow \-&(3\/* 64505',“_]& o Swmall
obthet €1, T o ewy edse fwt

D _l_ A "v"\ A . AM‘{QK‘ h&lﬂtht\-'ng
nbtcloring i (arser)

inreases (awils

2 Topological Sorting for Cats
The big brain cat, Duncan, is currently studying topological sorts! However, he has a variety of curiosities

that he wishes to satisfy.

(a) Describe at a high level in plain English how to perform a topological sort using an algorithm we already
know (hint: it involves DFS), and provide the time complexity.

Rerene 8&345 ond do foi"wiv

T
Fobioks fhot all dependenies ave Kaished

(b) Duncan came up with another way to possibly do topological sorts, and he wants you to check him on

its correctness and tell him if it is more efficient than our current way! Let’s derive the algorithm.

1. First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one

source node, and at least one sink node.

Tre - fret s #e point of & DAG

Nae Wes fo be o sinh- owne "Ll mode” Wit o edses going ot elie cycle
Reent and it shll o validd DAG- becomes & forze

2. Next, describe an algorithm (in English or in pseudocode) for finding all of the source nodes in a
graph.

Rewene groph ovd DFS do £ad e sink nodes (hich ae source vxolcs)

Otter wey frachs ncorming eéja‘ per node (o LitHe move un:uw'.e)

3. Now, make the following observation: If we remove all of the source nodes from a DAG, we are
guaranteed to have at least one new source node. Inspired by this fact, and using the previous
parts, come up with an algorithm to topological sort. Describe it in words or using pseudocode.
Is it more efficient than what we already have? Hint: If it’s easier for you, first consider one with

quadratic runtime, then think about how you might save some computations to make it faster.

TCC'Av\imllY heln's o\lgovf‘nwm

Tden lenges e in-degee awey, remedy Hews, ypbabing omy to e

A{p{v\ilh ciesS

Ruadiatic: vecowphe Sowces cvey Bwe

Mobile User

3 A Wordsearch

Given an N by N wordsearch and N words, devise an algorithm (using pseudocode or describe it in plain

Graphs 11, Tries 3

English) to solve the wordsearch in O(N?). For simplicity, assume no word is contained within another, i.e.

if the word ”bear” is given, "be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving intuition, see below for an

example wordsearch. Note that the below wordsearch doesn’t follow the precise specification of an N by N

wordsearch with N words, but your algorithm should work on this wordsearch regardless.

Example Wordsearch:

c

T

M

R

u

A

H

T

ajay
v A R U E

crystal
M E L C R grace

luke
Y U A C I s
AR S U ¢C sherry

sohum

anton
eric
isha
naama
sarina
shreyas
sumer
vidya

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation helpful. Recall that

longestPrefixOf accepts a String key and returns the longest prefix of key that exists in the Trie, or null

if no prefix exists.

[, Add words b a re- b ve leder on in cﬁedm"\g f wovds ae PW"'
2. Tecdle Aol e vod Veerh

q. Per
This
This
whet words a% poss:

Approc-ch fo this queshon Vi

s n?
letter aw:l

tnv o‘*"

o at wost W- "5‘\"""‘“{ by e

wing longest Achin

ble

N4

Fige ok how h vse Tae

s o L\:‘n"‘, N iention

sty e F Colini ol it pebn (s o o
Of wihh te key as te letles

1
Size of He wordseah -

;a“k\vﬂ.

https://algs4.cs.princeton.edu/52trie/TrieST.java.html
Mobile User

	Exam-Level Discussion 11 Slides
	examlevel11

